|
|
Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone |
Gabrielle Rushing1,Rebecca A. Ihrie2,*( ) |
1. Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA 2. Departments of Cancer Biology and Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA |
|
|
Abstract BACKGROUND: The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE: This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS: A literature search was conducted using Pubmed including the keywords “ventricular-subventricular zone,” “neural stem cell,” “heterogeneity,” “identity” and/or “single cell” to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS: This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS: Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
|
Keywords
ventricular-subventricular zone
neural stem cells
positional identity
single-cell
heterogeneity
|
Corresponding Author(s):
Rebecca A. Ihrie
|
Just Accepted Date: 17 June 2016
Online First Date: 08 July 2016
Issue Date: 30 August 2016
|
|
1 |
Aguirre A, Rubio M E, Gallo V (2010). Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature, 467(7313): 323–327
https://doi.org/10.1038/nature09347
pmid: 20844536
|
2 |
Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897
https://doi.org/10.1038/nature03994
pmid: 16208373
|
3 |
Altman J (1962). Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp Neurol, 5(4): 302–318
https://doi.org/10.1016/0014-4886(62)90040-7
pmid: 13860749
|
4 |
Altman J, Das G D (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 124(3): 319–335
https://doi.org/10.1002/cne.901240303
pmid: 5861717
|
5 |
Alvarez-Buylla A, García-Verdugo J M, Tramontin A D (2001). A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci, 2(4): 287–293
https://doi.org/10.1038/35067582
pmid: 11283751
|
6 |
Alvarez-Buylla A, Seri B, Doetsch F (2002). Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull, 57(6): 751–758
https://doi.org/10.1016/S0361-9230(01)00770-5
pmid: 12031271
|
7 |
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890
https://doi.org/10.1016/S0896-6273(04)00140-0
pmid: 15046721
|
8 |
Azim K, Zweifel S, Klaus F, Yoshikawa K, Amrein I, Raineteau O (2013). Early decline in progenitor diversity in the marmoset lateral ventricle. Cereb Cortex, 23(4): 922–931
https://doi.org/10.1093/cercor/bhs085
pmid: 22473896
|
9 |
Bannerman D M, Rawlins J N, McHugh S B, Deacon R M, Yee B K, Bast T, Zhang W N, Pothuizen H H, Feldon J (2004). Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev, 28(3): 273–283
https://doi.org/10.1016/j.neubiorev.2004.03.004
pmid: 15225971
|
10 |
Barraud P, Thompson L, Kirik D, Björklund A, Parmar M (2005). Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse. Eur J Neurosci, 22(7): 1555–1569
https://doi.org/10.1111/j.1460-9568.2005.04352.x
pmid: 16197496
|
11 |
Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, Kirchhoff F, Hirrlinger J, Haslinger A, Lie D C, Beckers J, Yoder B, Irmler M, Götz M (2010). In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 7(6): 744–758
https://doi.org/10.1016/j.stem.2010.11.017
pmid: 21112568
|
12 |
Bendall S C, Davis K L, Amir A D, Tadmor M D, Simonds E F, Chen T J, Shenfeld D K, Nolan G P, Pe’er D (2014). Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157(3): 714–725
https://doi.org/10.1016/j.cell.2014.04.005
pmid: 24766814
|
13 |
Benner E J, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H, Warner D S, Liu C, Eroglu C, Kuo C T (2013). Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature, 497(7449): 369–373
https://doi.org/10.1038/nature12069
pmid: 23615612
|
14 |
Bentivoglio M, Mazzarello P (1999). The history of radial glia. Brain Res Bull, 49(5): 305–315
https://doi.org/10.1016/S0361-9230(99)00065-9
pmid: 10452351
|
15 |
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639
https://doi.org/10.1016/j.neuron.2012.03.030
pmid: 22632721
|
16 |
Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469
https://doi.org/10.1073/pnas.172403999
pmid: 12177450
|
17 |
Bhardwaj R D, Curtis M A, Spalding K L, Buchholz B A, Fink D, Björk-Eriksson T, Nordborg C, Gage F H, Druid H, Eriksson P S, Frisén J (2006). Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA, 103(33): 12564–12568
https://doi.org/10.1073/pnas.0605177103
pmid: 16901981
|
18 |
Bignami A, Dahl D (1974). Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature, 252(5478): 55–56
https://doi.org/10.1038/252055a0
pmid: 4610404
|
19 |
Bignami A, Eng L F, Dahl D, Uyeda C T (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res, 43(2): 429–435
https://doi.org/10.1016/0006-8993(72)90398-8
pmid: 4559710
|
20 |
Breton-Provencher V, Lemasson M, Peralta M R 3rd, Saghatelyan A (2009). Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci, 29(48): 15245–15257
https://doi.org/10.1523/JNEUROSCI.3606-09.2009
pmid: 19955377
|
21 |
Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell T M, Rubenstein J L, Ericson J (1999). Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, 398(6728): 622–627
https://doi.org/10.1038/19315
pmid: 10217145
|
22 |
Brown K N, Chen S, Han Z, Lu C H, Tan X, Zhang X J, Ding L, Lopez-Cruz A, Saur D, Anderson S A, Huang K, Shi S H (2011). Clonal production and organization of inhibitory interneurons in the neocortex. Science, 334(6055): 480–486
https://doi.org/10.1126/science.1208884
pmid: 22034427
|
23 |
Brus M, Meurisse M, Gheusi G, Keller M, Lledo P M, Lévy F (2013). Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J Comp Neurol, 521(1): 169–188
https://doi.org/10.1002/cne.23169
pmid: 22700217
|
24 |
Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592
https://doi.org/10.1093/cercor/bhl164
pmid: 17259645
|
25 |
Calaora V, Chazal G, Nielsen P J, Rougon G, Moreau H (1996). mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience, 73(2): 581–594
https://doi.org/10.1016/0306-4522(96)00042-5
pmid: 8783272
|
26 |
Calzolari F, Michel J, Baumgart E V, Theis F, Götz M, Ninkovic J (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci, 18(4): 490–492
https://doi.org/10.1038/nn.3963
pmid: 25730673
|
27 |
Cameron H A, McKay R D (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435(4): 406–417
https://doi.org/10.1002/cne.1040
pmid: 11406822
|
28 |
Cameron R S, Rakic P (1991). Glial cell lineage in the cerebral cortex: a review and synthesis. Glia, 4(2): 124–137
https://doi.org/10.1002/glia.440040204
pmid: 1827774
|
29 |
Campbell K (2003). Dorsal-ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol, 13(1): 50–56
https://doi.org/10.1016/S0959-4388(03)00009-6
pmid: 12593982
|
30 |
Capela A, Temple S (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 35(5): 865–875
https://doi.org/10.1016/S0896-6273(02)00835-8
pmid: 12372282
|
31 |
Chanas-Sacré G, Thiry M, Pirard S, Rogister B, Moonen G, Mbebi C, Verdière-Sahuqué M, Leprince P (2000). A 295-kDA intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro. Dev Dyn, 219(4): 514–525
https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1078>3.0.CO;2-0
pmid: 11084651
|
32 |
Chen X, Lepier A, Berninger B, Tolkovsky A M, Herbert J (2012). Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus. PLoS ONE, 7(2): e31547
https://doi.org/10.1371/journal.pone.0031547
pmid: 22348101
|
33 |
Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262
https://doi.org/10.1146/annurev-neuro-071013-014134
pmid: 24905596
|
34 |
Chuong C M, Edelman G M (1984). Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci, 4(9): 2354–2368
pmid: 6481452
|
35 |
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559
https://doi.org/10.1016/j.neuron.2014.02.039
pmid: 24811379
|
36 |
Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, Salani S, Del Bo R, Ghezzi S, Strazzer S, Bresolin N, Comi G P (2007). Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol, 205(2): 547–562
https://doi.org/10.1016/j.expneurol.2007.03.021
pmid: 17466977
|
37 |
Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti J C, Hutnick L, Krueger R C Jr, Fan G, de Vellis J, Sun Y E (2008). CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA, 105(3): 1026–1031
https://doi.org/10.1073/pnas.0710000105
pmid: 18195354
|
38 |
Curtis M A, Kam M, Nannmark U, Anderson M F, Axell M Z, Wikkelso C, Holtås S, van Roon-Mom W M, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull R L, Eriksson P S (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315(5816): 1243–1249
https://doi.org/10.1126/science.1136281
pmid: 17303719
|
39 |
Dahl D, Rueger D C, Bignami A, Weber K, Osborn M (1981). Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol, 24(2): 191–196
pmid: 7285936
|
40 |
Davis A A, Temple S (1994). A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 372(6503): 263–266
https://doi.org/10.1038/372263a0
pmid: 7969470
|
41 |
Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427
https://doi.org/10.1083/jcb.200407053
pmid: 15684031
|
42 |
Daynac M, Morizur L, Kortulewski T, Gauthier L R, Ruat M, Mouthon M A, Boussin F D (2015). Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics. J Vis Exp, (103)
pmid: 26436641
|
43 |
De Marchis S, Bovetti S, Carletti B, Hsieh Y C, Garzotto D, Peretto P, Fasolo A, Puche A C, Rossi F (2007). Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci, 27(3): 657–664
https://doi.org/10.1523/JNEUROSCI.2870-06.2007
pmid: 17234597
|
44 |
Delgado R N, Lim D A (2015). Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells. Dev Biol, 407(2): 265–274
https://doi.org/10.1016/j.ydbio.2015.09.008
pmid: 26387477
|
45 |
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
https://doi.org/10.1038/nrn2822
pmid: 20354534
|
46 |
Didier M, Harandi M, Aguera M, Bancel B, Tardy M, Fages C, Calas A, Stagaard M, Møllgård K, Belin M F (1986). Differential immunocytochemical staining for glial fibrillary acidic (GFA) protein, S-100 protein and glutamine synthetase in the rat subcommissural organ, nonspecialized ventricular ependyma and adjacent neuropil. Cell Tissue Res, 245(2): 343–351
https://doi.org/10.1007/BF00213941
pmid: 2874885
|
47 |
Doetsch F (2003). The glial identity of neural stem cells. Nat Neurosci, 6(11): 1127–1134
https://doi.org/10.1038/nn1144
pmid: 14583753
|
48 |
Doetsch F, Alvarez-Buylla A (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA, 93(25): 14895–14900
https://doi.org/10.1073/pnas.93.25.14895
pmid: 8962152
|
49 |
Doetsch F, Caillé I, Lim D A, García-Verdugo J M, Alvarez-Buylla A (1999a). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6): 703–716
https://doi.org/10.1016/S0092-8674(00)80783-7
pmid: 10380923
|
50 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
pmid: 9185542
|
51 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999b). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
https://doi.org/10.1073/pnas.96.20.11619
pmid: 10500226
|
52 |
Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021–1034
https://doi.org/10.1016/S0896-6273(02)01133-9
pmid: 12495619
|
53 |
Edwards M A, Yamamoto M, Caviness V S Jr (1990). Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience, 36(1): 121–144
https://doi.org/10.1016/0306-4522(90)90356-9
pmid: 2215915
|
54 |
Egger V, Urban N N (2006). Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin Cell Dev Biol, 17(4): 424–432
https://doi.org/10.1016/j.semcdb.2006.04.006
pmid: 16889994
|
55 |
Ehninger D, Kempermann G (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex, 13(8): 845–851
https://doi.org/10.1093/cercor/13.8.845
pmid: 12853371
|
56 |
Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165
https://doi.org/10.1159/000082134
pmid: 15711057
|
57 |
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
https://doi.org/10.1523/JNEUROSCI.2899-04.2005
pmid: 15634788
|
58 |
Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004). Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci, 24(38): 8354–8365
https://doi.org/10.1523/JNEUROSCI.2751-04.2004
pmid: 15385618
|
59 |
Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell T M (1997a). Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol, 62(1): 451–466
https://doi.org/10.1101/SQB.1997.062.01.053
pmid: 9598380
|
60 |
Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell T M, Briscoe J (1997b). Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell, 90(1): 169–180
https://doi.org/10.1016/S0092-8674(00)80323-2
pmid: 9230312
|
61 |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305
pmid: 9809557
|
62 |
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083
https://doi.org/10.1016/j.cell.2014.01.044
pmid: 24561062
|
63 |
Fan G, Martinowich K, Chin M H, He F, Fouse S D, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J, Shuai K, Sun Y E (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development, 132(15): 3345–3356
https://doi.org/10.1242/dev.01912
pmid: 16014513
|
64 |
Fanselow M S, Dong H W (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1): 7–19
https://doi.org/10.1016/j.neuron.2009.11.031
pmid: 20152109
|
65 |
Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61
https://doi.org/10.1016/j.tins.2012.09.004
pmid: 23062965
|
66 |
Feng L, Hatten M E, Heintz N (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 12(4): 895–908
https://doi.org/10.1016/0896-6273(94)90341-7
pmid: 8161459
|
67 |
Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, DeBiasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819
https://doi.org/10.1242/dev.01204
pmid: 15240551
|
68 |
Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong F K, Peters J, Guhr E, Klemroth S, Prüfer K, Kelso J, Naumann R, Nüsslein I, Dahl A, Lachmann R, Pääbo S, Huttner W B (2015). Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 347(6229): 1465–1470
https://doi.org/10.1126/science.aaa1975
pmid: 25721503
|
69 |
Frantz G D, McConnell S K (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17(1): 55–61
https://doi.org/10.1016/S0896-6273(00)80280-9
pmid: 8755478
|
70 |
Fuccillo M, Joyner A L, Fishell G (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci, 7(10): 772–783
https://doi.org/10.1038/nrn1990
pmid: 16988653
|
71 |
Fuentealba L C, Obernier K, Alvarez-Buylla A (2012). Adult neural stem cells bridge their niche. Cell Stem Cell, 10(6): 698–708
https://doi.org/10.1016/j.stem.2012.05.012
pmid: 22704510
|
72 |
Fuentealba L C, Rompani S B, Parraguez J I, Obernier K, Romero R, Cepko C L, Alvarez-Buylla A (2015). Embryonic Origin of Postnatal Neural Stem Cells. Cell, 161(7): 1644–1655
https://doi.org/10.1016/j.cell.2015.05.041
pmid: 26091041
|
73 |
Gage F H (2002). Neurogenesis in the adult brain. J Neurosci, 22(3): 612–613
pmid: 11826087
|
74 |
Galileo D S, Gray G E, Owens G C, Majors J, Sanes J R (1990). Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA, 87(1): 458–462
https://doi.org/10.1073/pnas.87.1.458
pmid: 2104984
|
75 |
Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241
https://doi.org/10.1038/nn1340
pmid: 15494728
|
76 |
Garner C C, Brugg B, Matus A (1988). A 70-kilodalton microtubule-associated protein (MAP2c), related to MAP2. J Neurochem, 50(2): 609–615
https://doi.org/10.1111/j.1471-4159.1988.tb02954.x
pmid: 3121794
|
77 |
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84
https://doi.org/10.1002/stem.1520
pmid: 23964022
|
78 |
Gil-Perotín S, Alvarez-Buylla A, García-Verdugo J M (2009). Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol, 203: 1–101, ix (ix.)
pmid: 19552108
|
79 |
Gleeson J G, Lin P T, Flanagan L A, Walsh C A (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23(2): 257–271
https://doi.org/10.1016/S0896-6273(00)80778-3
pmid: 10399933
|
80 |
Goldman S A, Nottebohm F (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA, 80(8): 2390–2394
https://doi.org/10.1073/pnas.80.8.2390
pmid: 6572982
|
81 |
Golds E E, Braun P E (1976). Organization of membrane proteins in the intact myelin sheath. Pyridoxal phosphate and salicylaldehyde as probes of myelin structure. J Biol Chem, 251(15): 4729–4735
pmid: 947907
|
82 |
Gonzales-Roybal G, Lim D A (2013). Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet, 4: 194
https://doi.org/10.3389/fgene.2013.00194
pmid: 24115953
|
83 |
Gonzalez-Perez O, Alvarez-Buylla A (2011). Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Brain Res Rev, 67(1-2): 147–156
https://doi.org/10.1016/j.brainresrev.2011.01.001
pmid: 21236296
|
84 |
Gonzalez-Perez O, Quiñones-Hinojosa A (2010). Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia, 58(8): 975–983
pmid: 20187143
|
85 |
Götz M, Stoykova A, Gruss P (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21(5): 1031–1044
https://doi.org/10.1016/S0896-6273(00)80621-2
pmid: 9856459
|
86 |
Gould E, Vail N, Wagers M, Gross C G (2001). Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA, 98(19): 10910–10917
https://doi.org/10.1073/pnas.181354698
pmid: 11526209
|
87 |
Guerrero-Cázares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, García-Verdugo J M, Quinoñes-Hinojosa A (2011). Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol, 519(6): 1165–1180
https://doi.org/10.1002/cne.22566
pmid: 21344407
|
88 |
Guillemot F (2005). Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol, 17(6): 639–647
https://doi.org/10.1016/j.ceb.2005.09.006
pmid: 16226447
|
89 |
Hack M A, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo P M, Götz M (2005). Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci, 8(7): 865–872
https://doi.org/10.1038/nn1479
pmid: 15951811
|
90 |
Hall A, Giese N A, Richardson W D (1996). Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha-receptors. Development, 122(12): 4085–4094
pmid: 9012528
|
91 |
Hansen D V, Lui J H, Parker P R, Kriegstein A R (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464(7288): 554–561
https://doi.org/10.1038/nature08845
pmid: 20154730
|
92 |
Hart I K, Richardson W D, Heldin C H, Westermark B, Raff M C (1989). PDGF receptors on cells of the oligodendrocyte-type-2 astrocyte (O-2A) cell lineage. Development, 105(3): 595–603
pmid: 2558873
|
93 |
Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30
https://doi.org/10.1006/dbio.2000.9962
pmid: 11133151
|
94 |
Harwell C C, Fuentealba L C, Gonzalez-Cerrillo A, Parker P R, Gertz C C, Mazzola E, Garcia M T, Alvarez-Buylla A, Cepko C L, Kriegstein A R (2015). Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons. Neuron, 87(5): 999–1007
https://doi.org/10.1016/j.neuron.2015.07.030
pmid: 26299474
|
95 |
Haubensak W, Attardo A, Denk W, Huttner W B (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA, 101(9): 3196–3201
https://doi.org/10.1073/pnas.0308600100
pmid: 14963232
|
96 |
He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de Vellis J, Sun Y E (2005). A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci, 8(5): 616–625
https://doi.org/10.1038/nn1440
pmid: 15852015
|
97 |
Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, Schicha H, Heiss W D, Ebmeier K (2002). Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med, 43(1): 21–26
|
98 |
Herrera D G, Garcia-Verdugo J M, Alvarez-Buylla A (1999). Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann Neurol, 46(6): 867–877
https://doi.org/10.1002/1531-8249(199912)46:6<867::AID-ANA9>3.0.CO;2-Z
pmid: 10589539
|
99 |
Hevner R F (2006). From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol, 33(1): 33–50
https://doi.org/10.1385/MN:33:1:033
pmid: 16388109
|
100 |
Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233
https://doi.org/10.1016/j.neures.2006.03.004
pmid: 16621079
|
101 |
His W (1904). Die Entwickelung des menschlichen Gehirns wahrend der esten Monte.Leipzig: Hirzel
|
102 |
Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson D J (2008). Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell, 133(3): 510–522
https://doi.org/10.1016/j.cell.2008.02.046
pmid: 18455991
|
103 |
Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328
pmid: 4078630
|
104 |
Huang L, DeVries G J, Bittman E L (1998). Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol, 36(3): 410–420
https://doi.org/10.1002/(SICI)1097-4695(19980905)36:3<410::AID-NEU8>3.0.CO;2-Z
pmid: 9733075
|
105 |
Ihrie R A, Shah J K, Harwell C C, Levine J H, Guinto C D, Lezameta M, Kriegstein A R, Alvarez-Buylla A (2011). Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron, 71(2): 250–262
https://doi.org/10.1016/j.neuron.2011.05.018
pmid: 21791285
|
106 |
Ihrie R A, Alvarez-Buylla A (2009). Neural Stem Cells Disguised as Astrocytes. In: Astrocytes in (Patho)Physiology of the Nervous System, Parpura V, Haydon P G (Eds.). (Springer US), pp. 27–47
|
107 |
Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science, 342(6163): 1203–1208
https://doi.org/10.1126/science.1242366
pmid: 24179156
|
108 |
Imayoshi I, Sakamoto M, Kageyama R (2011). Genetic methods to identify and manipulate newly born neurons in the adult brain. Front Neurosci, 5: 64
https://doi.org/10.3389/fnins.2011.00064
pmid: 21562606
|
109 |
Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010). Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci, 30(9): 3489–3498
https://doi.org/10.1523/JNEUROSCI.4987-09.2010
pmid: 20203209
|
110 |
Imura T, Kornblum H I, Sofroniew M V (2003). The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci, 23(7): 2824–2832
pmid: 12684469
|
111 |
Inta D, Alfonso J, von Engelhardt J, Kreuzberg M M, Meyer A H, van Hooft J A, Monyer H (2008). Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci USA, 105(52): 20994–20999
https://doi.org/10.1073/pnas.0807059105
pmid: 19095802
|
112 |
Irvin D K, Nakano I, Paucar A, Kornblum H I (2004). Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res, 75(3): 330–343
https://doi.org/10.1002/jnr.10843
pmid: 14743446
|
113 |
Isaacson J S, Strowbridge B W (1998). Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron, 20(4): 749–761
https://doi.org/10.1016/S0896-6273(00)81013-2
pmid: 9581766
|
114 |
Jackson E L, Alvarez-Buylla A (2008). Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs, 188(1-2): 212–224
https://doi.org/10.1159/000114541
pmid: 18223308
|
115 |
Johe K K, Hazel T G, Muller T, Dugich-Djordjevic M M, McKay R D (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev, 10(24): 3129–3140
https://doi.org/10.1101/gad.10.24.3129
pmid: 8985182
|
116 |
Kaplan M S, Hinds J W (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science, 197(4308): 1092–1094
https://doi.org/10.1126/science.887941
pmid: 887941
|
117 |
Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17(2): 259–273
https://doi.org/10.1006/mcne.2000.0925
pmid: 11178865
|
118 |
Kirino T, Brightman M W, Oertel W H, Schmechel D E, Marangos P J (1983). Neuron-specific enolase as an index of neuronal regeneration and reinnervation. J Neurosci, 3(5): 915–923
pmid: 6842284
|
119 |
Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999). Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci, 19(6): 2171–2180
pmid: 10066270
|
120 |
Kohwi M, Osumi N, Rubenstein J L, Alvarez-Buylla A (2005). Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci, 25(30): 6997–7003
https://doi.org/10.1523/JNEUROSCI.1435-05.2005
pmid: 16049175
|
121 |
Kohwi M, Petryniak M A, Long J E, Ekker M, Obata K, Yanagawa Y, Rubenstein J L, Alvarez-Buylla A (2007). A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci, 27(26): 6878–6891
https://doi.org/10.1523/JNEUROSCI.0254-07.2007
pmid: 17596436
|
122 |
Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S (2010). Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell, 7(2): 163–173
https://doi.org/10.1016/j.stem.2010.05.019
pmid: 20682445
|
123 |
Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, Lowry N, Shen Q, Temple S (2012). VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell, 11(2): 220–230
https://doi.org/10.1016/j.stem.2012.06.016
pmid: 22862947
|
124 |
Kopan R, Ilagan M X G (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137(2): 216–233
https://doi.org/10.1016/j.cell.2009.03.045
pmid: 19379690
|
125 |
Kornack D R, Rakic P (2001a). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130
https://doi.org/10.1126/science.1065467
pmid: 11739948
|
126 |
Kornack D R, Rakic P (2001b). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA, 98(8): 4752–4757
https://doi.org/10.1073/pnas.081074998
pmid: 11296302
|
127 |
Kosaka K, Aika Y, Toida K, Heizmann C W, Hunziker W, Jacobowitz D M, Nagatsu I, Streit P, Visser T J, Kosaka T (1995). Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci Res, 23(1): 73–88
https://doi.org/10.1016/0168-0102(95)90017-9
pmid: 7501303
|
128 |
Kosaka K, Kosaka T (2005). synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int, 80(2): 80–90
https://doi.org/10.1111/j.1447-073x.2005.00092.x
pmid: 15960313
|
129 |
Kriegstein A, Alvarez-Buylla A (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32(1): 149–184
https://doi.org/10.1146/annurev.neuro.051508.135600
pmid: 19555289
|
130 |
Kriegstein A R, Götz M (2003). Radial glia diversity: a matter of cell fate. Glia, 43(1): 37–43
https://doi.org/10.1002/glia.10250
pmid: 12761864
|
131 |
Laywell E D, Rakic P, Kukekov V G, Holland E C, Steindler D A (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA, 97(25): 13883–13888
https://doi.org/10.1073/pnas.250471697
pmid: 11095732
|
132 |
Lazarini F, Mouthon M A, Gheusi G, de Chaumont F, Olivo-Marin J C, Lamarque S, Abrous D N, Boussin F D, Lledo P M (2009). Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS ONE, 4(9): e7017
https://doi.org/10.1371/journal.pone.0007017
pmid: 19753118
|
133 |
Lehtinen M K, Zappaterra M W, Chen X, Yang Y J, Hill A D, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole A J, Wong E T, LaMantia A S, Walsh C A (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 69(5): 893–905
https://doi.org/10.1016/j.neuron.2011.01.023
pmid: 21382550
|
134 |
Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595
https://doi.org/10.1016/0092-8674(90)90662-X
pmid: 1689217
|
135 |
Lepousez G, Valley M T, Lledo P M (2013). The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol, 75(1): 339–363
https://doi.org/10.1146/annurev-physiol-030212-183731
pmid: 23190074
|
136 |
Levine J H, Simonds E F, Bendall S C, Davis K L, Amir A D, Tadmor M D, Litvin O, Fienberg H G, Jager A, Zunder E R, Finck R, Gedman A L, Radtke I, Downing J R, Pe’er D, Nolan G P (2015). Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 162(1): 184–197
https://doi.org/10.1016/j.cell.2015.05.047
pmid: 26095251
|
137 |
LeVine S M, Goldman J E (1988a). Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum. J Neurosci, 8(11): 3992–4006
pmid: 3054008
|
138 |
LeVine S M, Goldman J E (1988b). Ultrastructural characteristics of GD3 ganglioside-positive immature glia in rat forebrain white matter. J Comp Neurol, 277(3): 456–464
https://doi.org/10.1002/cne.902770310
pmid: 3198802
|
139 |
Levitt P, Cooper M L, Rakic P (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci, 1(1): 27–39
pmid: 7050307
|
140 |
Li G, Fang L, Fernández G, Pleasure S J (2013). The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron, 78(4): 658–672
https://doi.org/10.1016/j.neuron.2013.03.019
pmid: 23643936
|
141 |
Li L, Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545
https://doi.org/10.1126/science.1180794
pmid: 20110496
|
142 |
Li X, Sun C, Lin C, Ma T, Madhavan M C, Campbell K, Yang Z (2011). The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb. J Neurosci, 31(23): 8450–8455
https://doi.org/10.1523/JNEUROSCI.0939-11.2011
pmid: 21653849
|
143 |
Lim D A, Alvarez-Buylla A (1999). Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA, 96(13): 7526–7531
https://doi.org/10.1073/pnas.96.13.7526
pmid: 10377448
|
144 |
Lim D A, Alvarez-Buylla A (2016). The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol, 8(5): 8
https://doi.org/10.1101/cshperspect.a018820
pmid: 27048191
|
145 |
Lim D A, Huang Y C, Swigut T, Mirick A L, Garcia-Verdugo J M, Wysocka J, Ernst P, Alvarez-Buylla A (2009). Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature, 458(7237): 529–533
https://doi.org/10.1038/nature07726
pmid: 19212323
|
146 |
Liu F, You Y, Li X, Ma T, Nie Y, Wei B, Li T, Lin H, Yang Z (2009). Brain injury does not alter the intrinsic differentiation potential of adult neuroblasts. J Neurosci, 29(16): 5075–5087
https://doi.org/10.1523/JNEUROSCI.0201-09.2009
pmid: 19386903
|
147 |
Liu Y, Han S S, Wu Y, Tuohy T M, Xue H, Cai J, Back S A, Sherman L S, Fischer I, Rao M S (2004). CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol, 276(1): 31–46
https://doi.org/10.1016/j.ydbio.2004.08.018
pmid: 15531362
|
148 |
Livneh Y, Adam Y, Mizrahi A (2014). Odor processing by adult-born neurons. Neuron, 81(5): 1097–1110
https://doi.org/10.1016/j.neuron.2014.01.007
pmid: 24508384
|
149 |
Lledo P M, Alonso M, Grubb M S (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci, 7(3): 179–193
https://doi.org/10.1038/nrn1867
pmid: 16495940
|
150 |
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015). Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell, 17(3): 329–340
https://doi.org/10.1016/j.stem.2015.07.002
pmid: 26235341
|
151 |
Lois C, Alvarez-Buylla A (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA, 90(5): 2074–2077
https://doi.org/10.1073/pnas.90.5.2074
pmid: 8446631
|
152 |
Lois C, García-Verdugo J M, Alvarez-Buylla A (1996). Chain migration of neuronal precursors. Science, 271(5251): 978–981
https://doi.org/10.1126/science.271.5251.978
pmid: 8584933
|
153 |
Long J E, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein J L (2007). Dlx-dependent and-independent regulation of olfactory bulb interneuron differentiation. J Neurosci, 27(12): 3230–3243
https://doi.org/10.1523/JNEUROSCI.5265-06.2007
pmid: 17376983
|
154 |
Longe O, Senior C, Rippon G (2009). The lateral and ventromedial prefrontal cortex work as a dynamic integrated system: evidence from FMRI connectivity analysis. J Cogn Neurosci, 21(1): 141–154
https://doi.org/10.1162/jocn.2009.21012
pmid: 18476765
|
155 |
Low V F, Faull R L, Bennet L, Gunn A J, Curtis M A (2013). Neurogenesis and progenitor cell distribution in the subgranular zone and subventricular zone of the adult sheep brain. Neuroscience, 244: 173–187
https://doi.org/10.1016/j.neuroscience.2013.04.006
pmid: 23587842
|
156 |
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C (2006). The aging neurogenic subventricular zone. Aging Cell, 5(2): 139–152
https://doi.org/10.1111/j.1474-9726.2006.00197.x
pmid: 16626393
|
157 |
Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, Shi Z, Zhang K, Li C, Cui Y, Lin H, Luo D, Wang J, Lin C, Dai Z, Zhu H, Zhang J, Liu J, Liu H, deVellis J, Horvath S, Sun Y E, Li S (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 161(5): 1175–1186
https://doi.org/10.1016/j.cell.2015.04.001
pmid: 26000486
|
158 |
Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041
https://doi.org/10.1073/pnas.1735482100
pmid: 14559968
|
159 |
Marzesco A M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner W B (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci, 118(Pt 13): 2849–2858
https://doi.org/10.1242/jcs.02439
pmid: 15976444
|
160 |
Maslov A Y, Barone T A, Plunkett R J, Pruitt S C (2004). Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci, 24(7): 1726–1733
https://doi.org/10.1523/JNEUROSCI.4608-03.2004
pmid: 14973255
|
161 |
Maurice A (2007). Response to Comment on “Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension”. Science, 318(5849): 393c
https://doi.org/10.1126/science.1145164
|
162 |
Mayer C, Jaglin X H, Cobbs L V, Bandler R C, Streicher C, Cepko C L, Hippenmeyer S, Fishell G (2015). Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron, 87(5): 989–998
https://doi.org/10.1016/j.neuron.2015.07.011
pmid: 26299473
|
163 |
McCarthy M, Turnbull D H, Walsh C A, Fishell G (2001). Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci, 21(17): 6772–6781
pmid: 11517265
|
164 |
McDermott K W, Lantos P L (1989). The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain. Brain Res Dev Brain Res, 45(2): 169–177
https://doi.org/10.1016/0165-3806(89)90036-9
pmid: 2496940
|
165 |
McDermott K W, Lantos P L (1990). Cell proliferation in the subependymal layer of the postnatal marmoset, Callithrix jacchus. Brain Res Dev Brain Res, 57(2): 269–277
https://doi.org/10.1016/0165-3806(90)90053-2
pmid: 2073725
|
166 |
McMahon A P, Ingham P W, Tabin C J (2003). Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol, 53: 1–114
https://doi.org/10.1016/S0070-2153(03)53002-2
pmid: 12509125
|
167 |
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 26(30): 7907–7918
https://doi.org/10.1523/JNEUROSCI.1299-06.2006
pmid: 16870736
|
168 |
Merkle F T, Fuentealba L C, Sanders T A, Magno L, Kessaris N, Alvarez-Buylla A (2014). Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci, 17(2): 207–214
https://doi.org/10.1038/nn.3610
pmid: 24362763
|
169 |
Merkle F T, Mirzadeh Z, Alvarez-Buylla A (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317(5836): 381–384
https://doi.org/10.1126/science.1144914
pmid: 17615304
|
170 |
Merkle F T, Tramontin A D, García-Verdugo J M, Alvarez-Buylla A (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA, 101(50): 17528–17532
https://doi.org/10.1073/pnas.0407893101
pmid: 15574494
|
171 |
Mich J K, Signer R A, Nakada D, Pineda A, Burgess R J, Vue T Y, Johnson J E, Morrison S J (2014). Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife, 3: e02669
https://doi.org/10.7554/eLife.02669
pmid: 24843006
|
172 |
Milosevic A, Noctor S C, Martinez-Cerdeno V, Kriegstein A R, Goldman J E (2008). Progenitors from the postnatal forebrain subventricular zone differentiate into cerebellar-like interneurons and cerebellar-specific astrocytes upon transplantation. Mol Cell Neurosci, 39(3): 324–334
https://doi.org/10.1016/j.mcn.2008.07.015
pmid: 18718868
|
173 |
Mirzadeh Z, Merkle F T, Soriano-Navarro M, Garcia-Verdugo J M, Alvarez-Buylla A (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 3(3): 265–278
https://doi.org/10.1016/j.stem.2008.07.004
pmid: 18786414
|
174 |
Misson J P, Edwards M A, Yamamoto M, Caviness V S Jr (1988). Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res, 44(1): 95–108
https://doi.org/10.1016/0165-3806(88)90121-6
pmid: 3069243
|
175 |
Molofsky A V, Slutsky S G, Joseph N M, He S, Pardal R, Krishnamurthy J, Sharpless N E, Morrison S J (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443(7110): 448–452
https://doi.org/10.1038/nature05091
pmid: 16957738
|
176 |
Molyneaux B J, Arlotta P, Menezes J R, Macklis J D (2007). Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci, 8(6): 427–437
https://doi.org/10.1038/nrn2151
pmid: 17514196
|
177 |
Moreno M M, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N (2009). Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci USA, 106(42): 17980–17985
https://doi.org/10.1073/pnas.0907063106
pmid: 19815505
|
178 |
Mori T, Buffo A, Götz M (2005). The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol, 69: 67–99
https://doi.org/10.1016/S0070-2153(05)69004-7
pmid: 16243597
|
179 |
Morshead C M, Garcia A D, Sofroniew M V, van Der Kooy D (2003). The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci, 18(1): 76–84
https://doi.org/10.1046/j.1460-9568.2003.02727.x
pmid: 12859339
|
180 |
Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082
https://doi.org/10.1016/0896-6273(94)90046-9
pmid: 7946346
|
181 |
Mullen R J, Buck C R, Smith A M (1992). NeuN, a neuronal specific nuclear protein in vertebrates. Development, 116(1): 201–211
pmid: 1483388
|
182 |
Nedelec J, Pierres M, Moreau H, Barbet J, Naquet P, Faivre-Sarrailh C, Rougon G (1992). Isolation and characterization of a novel glycosyl-phosphatidylinositol-anchored glycoconjugate expressed by developing neurons. Eur J Biochem, 203(3): 433–442
|
183 |
Nishiyama A, Lin X H, Giese N, Heldin C H, Stallcup W B (1996). Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res, 43(3): 299–314
https://doi.org/10.1002/(SICI)1097-4547(19960201)43:3<299::AID-JNR5>3.0.CO;2-E
pmid: 8714519
|
184 |
Nissant A, Bardy C, Katagiri H, Murray K, Lledo P M (2009). Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci, 12(6): 728–730
https://doi.org/10.1038/nn.2298
pmid: 19412168
|
185 |
Niu W, Zang T, Zou Y, Fang S, Smith D K, Bachoo R, Zhang C L (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol, 15(10): 1164–1175
https://doi.org/10.1038/ncb2843
pmid: 24056302
|
186 |
Noctor S C, Flint A C, Weissman T A, Wong W S, Clinton B K, Kriegstein A R (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci, 22(8): 3161–3173
pmid: 11943818
|
187 |
Noctor S C, Martínez-Cerdeño V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7(2): 136–144
https://doi.org/10.1038/nn1172
pmid: 14703572
|
188 |
Noctor S C, Martinez-Cerdeno, V, Kriegstein A R (2007). Neural stem and progenitor cells in cortical development. Novartis Found Symp, 288: 59–73; discussion 73–58, 96–58
|
189 |
Noctor S C, Martínez-Cerdeño V, Kriegstein A R (2008). Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol, 508(1): 28–44
https://doi.org/10.1002/cne.21669
pmid: 18288691
|
190 |
Omlin F X, Webster H D, Palkovits C G, Cohen S R (1982). Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J Cell Biol, 95(1): 242–248
https://doi.org/10.1083/jcb.95.1.242
pmid: 6183269
|
191 |
Ong W Y, Levine J M (1999). A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience, 92(1): 83–95
https://doi.org/10.1016/S0306-4522(98)00751-9
pmid: 10392832
|
192 |
Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo J M, Kuo C T (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron, 71(1): 61–75
https://doi.org/10.1016/j.neuron.2011.05.029
pmid: 21745638
|
193 |
Paredes M F, Sorrells S F, Garcia-Verdugo J M, Alvarez-Buylla A (2016). Brain size and limits to adult neurogenesis. J Comp Neurol, 524(3): 646–664
https://doi.org/10.1002/cne.23896
pmid: 26417888
|
194 |
Parras C M, Galli R, Britz O, Soares S, Galichet C, Battiste J, Johnson J E, Nakafuku M, Vescovi A, Guillemot F (2004). Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J, 23(22): 4495–4505
https://doi.org/10.1038/sj.emboj.7600447
pmid: 15496983
|
195 |
Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392
https://doi.org/10.1073/pnas.0810407106
pmid: 19332781
|
196 |
Pencea V, Bingaman K D, Freedman L J, Luskin M B (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol, 172(1): 1–16
https://doi.org/10.1006/exnr.2001.7768
pmid: 11681836
|
197 |
Peretto P, Merighi A, Fasolo A, Bonfanti L (1997). Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull, 42(1): 9–21
https://doi.org/10.1016/S0361-9230(96)00116-5
pmid: 8978930
|
198 |
Pérez-Martín M, Cifuentes M, Grondona J M, Bermúdez-Silva F J, Arrabal P M, Pérez-Fígares J M, Jiménez A J, García-Segura L M, Férnandez-Llebrez P, Fernandez-Llebrez P, the P. Fernández-Llebrez (2003). Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor. Eur J Neurosci, 17(2): 205–211
https://doi.org/10.1046/j.1460-9568.2003.02432.x
pmid: 12542656
|
199 |
Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113
pmid: 12122071
|
200 |
Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002). Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA, 99(20): 13211–13216
https://doi.org/10.1073/pnas.192314199
pmid: 12235363
|
201 |
Pilaz L J, McMahon J J, Miller E E, Lennox A L, Suzuki A, Salmon E, Silver D L (2016). Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain. Neuron, 89(1): 83–99
https://doi.org/10.1016/j.neuron.2015.12.007
pmid: 26748089
|
202 |
Pinto L, Mader M T, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P, Beckers J, Götz M (2008). Prospective isolation of functionally distinct radial glial subtypes—lineage and transcriptome analysis. Mol Cell Neurosci, 38(1): 15–42
https://doi.org/10.1016/j.mcn.2008.01.012
pmid: 18372191
|
203 |
Pixley S K, de Vellis J (1984). Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res, 317(2): 201–209
https://doi.org/10.1016/0165-3806(84)90097-X
pmid: 6383523
|
204 |
Poduslo J F, Braun P E (1975). Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorproation of iodine into myelin surface proteins. J Biol Chem, 250(3): 1099–1105
pmid: 1112791
|
205 |
Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013). Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA, 110(11): E1045–E1054
https://doi.org/10.1073/pnas.1219563110
pmid: 23431204
|
206 |
Price J L, Powell T P (1970). The mitral and short axon cells of the olfactory bulb. J Cell Sci, 7(3): 631–651
pmid: 5492279
|
207 |
Pringle N P, Mudhar H S, Collarini E J, Richardson W D (1992). PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development, 115(2): 535–551
pmid: 1425339
|
208 |
Puelles L, Rubenstein J L (2003). Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci, 26(9): 469–476
https://doi.org/10.1016/S0166-2236(03)00234-0
pmid: 12948657
|
209 |
Purves D (2012). Neuroscience, 5th edn (Sunderland, Mass.: Sinauer Associates)
|
210 |
Qian X, Goderie S K, Shen Q, Stern J H, Temple S (1998). Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development, 125(16): 3143–3152
pmid: 9671587
|
211 |
Quarles R H, Trapp B D (1984). Localization of myelin-associated glycoprotein. J Neurochem, 43(6): 1773–1777
https://doi.org/10.1111/j.1471-4159.1984.tb06110.x
pmid: 6208341
|
212 |
Rakic P (1988). Specification of cerebral cortical areas. Science, 241(4862): 170–176
https://doi.org/10.1126/science.3291116
pmid: 3291116
|
213 |
Rakic P (2006). A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb Cortex, 16(Suppl 1): i3–i17
https://doi.org/10.1093/cercor/bhk036
pmid: 16766705
|
214 |
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 298(5593): 597–600
https://doi.org/10.1126/science.1072530
pmid: 12228720
|
215 |
Ramos A D, Andersen R E, Liu S J, Nowakowski T J, Hong S J, Gertz C C, Salinas R D, Zarabi H, Kriegstein A R, Lim D A (2015). The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell, 16(4): 439–447
https://doi.org/10.1016/j.stem.2015.02.007
pmid: 25800779
|
216 |
Reid C B, Liang I, Walsh C (1995). Systematic widespread clonal organization in cerebral cortex. Neuron, 15(2): 299–310
https://doi.org/10.1016/0896-6273(95)90035-7
pmid: 7646887
|
217 |
Reynolds B A, Weiss S (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052): 1707–1710
https://doi.org/10.1126/science.1553558
pmid: 1553558
|
218 |
Roccio M, Schmitter D, Knobloch M, Okawa Y, Sage D, Lutolf M P (2013). Predicting stem cell fate changes by differential cell cycle progression patterns. Development, 140(2): 459–470
https://doi.org/10.1242/dev.086215
pmid: 23193167
|
219 |
Rochefort C, Gheusi G, Vincent J D, Lledo P M (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci, 22(7): 2679–2689
pmid: 11923433
|
220 |
Rodríguez-Pérez L M, Pérez-Martín M, Jiménez A J, Fernández-Llebrez P (2003). Immunocytochemical characterisation of the wall of the bovine lateral ventricle. Cell Tissue Res, 314(3): 325–335
https://doi.org/10.1007/s00441-003-0794-1
pmid: 14513354
|
221 |
Rougon G, Alterman L A, Dennis K, Guo X J, Kinnon C (1991). The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol, 21(6): 1397–1402
https://doi.org/10.1002/eji.1830210611
pmid: 2044653
|
222 |
Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014a). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799
https://doi.org/10.1523/JNEUROSCI.0674-14.2014
pmid: 24760839
|
223 |
Sakamoto M, Kageyama R, Imayoshi I (2014b). The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci, 8: 121
https://doi.org/10.3389/fnins.2014.00121
pmid: 24904263
|
224 |
Samanta J, Grund E M, Silva H M, Lafaille J J, Fishell G, Salzer J L (2015). Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature, 526(7573): 448–452
https://doi.org/10.1038/nature14957
pmid: 26416758
|
225 |
Sanai N, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2007). Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science, 318(5849): 393, author reply 393
https://doi.org/10.1126/science.1145011
pmid: 17947566
|
226 |
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386
https://doi.org/10.1038/nature10487
pmid: 21964341
|
227 |
Sanai N, Tramontin A D, Quiñones-Hinojosa A, Barbaro N M, Gupta N, Kunwar S, Lawton M T, McDermott M W, Parsa A T, Manuel-García Verdugo J, Berger M S, Alvarez-Buylla A (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427(6976): 740–744
https://doi.org/10.1038/nature02301
pmid: 14973487
|
228 |
Sawamoto K, Hirota Y, Alfaro-Cervello C, Soriano-Navarro M, He X, Hayakawa-Yano Y, Yamada M, Hikishima K, Tabata H, Iwanami A, Nakajima K, Toyama Y, Itoh T, Alvarez-Buylla A, Garcia-Verdugo J M, Okano H (2011). Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol, 519(4): 690–713
https://doi.org/10.1002/cne.22543
pmid: 21246550
|
229 |
Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin J A, Yamada M, Spassky N, Murcia N S, Garcia-Verdugo J M, Marin O, Rubenstein J L, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 311(5761): 629–632
https://doi.org/10.1126/science.1119133
pmid: 16410488
|
230 |
Schmechel D E, Marangos P J (1983). Neuron specific enolase as a marker or differentiation in neurons and neuroendocine cells. In: McKelvey J, Ba J, ed. Current Methods in Cellular Neurobiology. New York: John Wiley & Sons. pp 1–62
|
231 |
Schmechel D E, Rakic P (1979). A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl), 156(2): 115–152
https://doi.org/10.1007/BF00300010
pmid: 111580
|
232 |
Schnitzer J, Schachner M (1981). Characterization of isolated mouse cerebellar cell populations in vitro. J Neuroimmunol, 1(4): 457–470
https://doi.org/10.1016/0165-5728(81)90023-0
pmid: 7050171
|
233 |
Shen Q, Goderie S K, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304(5675): 1338–1340
https://doi.org/10.1126/science.1095505
pmid: 15060285
|
234 |
Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300
https://doi.org/10.1016/j.stem.2008.07.026
pmid: 18786416
|
235 |
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219
pmid: 9364068
|
236 |
Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372
https://doi.org/10.1016/j.stem.2015.07.013
pmid: 26299571
|
237 |
Sidman R L, Miale I L, Feder N (1959). Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol, 1(4): 322–333
https://doi.org/10.1016/0014-4886(59)90024-X
pmid: 14446424
|
238 |
Sohn J, Orosco L, Guo F, Chung S H, Bannerman P, Mills Ko E, Zarbalis K, Deng W, Pleasure D (2015). The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci, 35(9): 3756–3763
https://doi.org/10.1523/JNEUROSCI.3454-14.2015
pmid: 25740506
|
239 |
Sommer I, Schachner M (1981). Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol, 83(2): 311–327
https://doi.org/10.1016/0012-1606(81)90477-2
pmid: 6786942
|
240 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002
pmid: 23746839
|
241 |
Spassky N, Merkle F T, Flames N, Tramontin A D, García-Verdugo J M, Alvarez-Buylla A (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci, 25(1): 10–18
https://doi.org/10.1523/JNEUROSCI.1108-04.2005
pmid: 15634762
|
242 |
Stallcup W B, Beasley L (1987). Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J Neurosci, 7(9): 2737–2744
pmid: 3305800
|
243 |
Stühmer T, Puelles L, Ekker M, Rubenstein J L (2002). Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. Cereb Cortex, 12(1): 75–85
https://doi.org/10.1093/cercor/12.1.75
pmid: 11734534
|
244 |
Sultan S, Mandairon N, Kermen F, Garcia S, Sacquet J, Didier A (2010). Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J, 24(7): 2355–2363. doi: 10.1096/fj.09-151456
|
245 |
Sunabori T, Tokunaga A, Nagai T, Sawamoto K, Okabe M, Miyawaki A, Matsuzaki Y, Miyata T, Okano H (2008). Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. J Cell Sci, 121(Pt 8): 1204–1212
https://doi.org/10.1242/jcs.025064
pmid: 18349072
|
246 |
Szatkowska I, Szymańska O, Grabowska A (2004). The role of the human ventromedial prefrontal cortex in memory for contextual information. Neurosci Lett, 364(2): 71–75
https://doi.org/10.1016/j.neulet.2004.03.084
pmid: 15196680
|
247 |
Temple S (2001). The development of neural stem cells. Nature, 414(6859): 112–117
https://doi.org/10.1038/35102174
pmid: 11689956
|
248 |
Tong C K, Fuentealba L C, Shah J K, Lindquist R A, Ihrie R A, Guinto C D, Rodas-Rodriguez J L, Alvarez-Buylla A (2015). A Dorsal SHH-Dependent Domain in the V-SVZ Produces Large Numbers of Oligodendroglial Lineage Cells in the Postnatal Brain. Stem Cell Rep, 5(4): 461–470
https://doi.org/10.1016/j.stemcr.2015.08.013
pmid: 26411905
|
249 |
Uchida N, Buck D W, He D, Reitsma M J, Masek M, Phan T V, Tsukamoto A S, Gage F H, Weissman I L (2000). Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA, 97(26): 14720–14725
https://doi.org/10.1073/pnas.97.26.14720
pmid: 11121071
|
250 |
Ullensvang K, Lehre K P, Storm-Mathisen J, Danbolt N C (1997). Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci, 9(8): 1646–1655
https://doi.org/10.1111/j.1460-9568.1997.tb01522.x
pmid: 9283819
|
251 |
Ventura R E, Goldman J E (2007). Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci, 27(16): 4297–4302
https://doi.org/10.1523/JNEUROSCI.0399-07.2007
pmid: 17442813
|
252 |
Voigt T (1989). Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol, 289(1): 74–88
https://doi.org/10.1002/cne.902890106
pmid: 2808761
|
253 |
Waclaw R R, Allen Z J 2nd, Bell S M, Erdélyi F, Szabó G, Potter S S, Campbell K (2006). The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron, 49(4): 503–516
https://doi.org/10.1016/j.neuron.2006.01.018
pmid: 16476661
|
254 |
Walker A S, Goings G E, Kim Y, Miller R J, Chenn A, Szele F G (2010). Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast, 2010: 894374
https://doi.org/10.1155/2010/894374
pmid: 21527990
|
255 |
Walsh C, Cepko C L (1988). Clonally related cortical cells show several migration patterns. Science, 241(4871): 1342–1345
https://doi.org/10.1126/science.3137660
pmid: 3137660
|
256 |
Walsh C, Cepko C L (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255(5043): 434–440
https://doi.org/10.1126/science.1734520
pmid: 1734520
|
257 |
Walsh C, Cepko C L (1993). Clonal dispersion in proliferative layers of developing cerebral cortex. Nature, 362(6421): 632–635
https://doi.org/10.1038/362632a0
pmid: 8464513
|
258 |
Wang C, Liu F, Liu Y Y, Zhao C H, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 21(11): 1534–1550
https://doi.org/10.1038/cr.2011.83
pmid: 21577236
|
259 |
Wang D D, Bordey A (2008). The astrocyte odyssey. Prog Neurobiol, 86(4): 342–367
pmid: 18948166
|
260 |
Ware M L, Tavazoie S F, Reid C B, Walsh C A (1999). Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb Cortex, 9(6): 636–645
https://doi.org/10.1093/cercor/9.6.636
pmid: 10498282
|
261 |
Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson A C, Reynolds B A (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci, 16(23): 7599–7609
pmid: 8922416
|
262 |
Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466
https://doi.org/10.1038/8131
pmid: 10321251
|
263 |
Willaime-Morawek S, Seaberg R M, Batista C, Labbé E, Attisano L, Gorski J A, Jones K R, Kam A, Morshead C M, van der Kooy D (2006). Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J Cell Biol, 175(1): 159–168
https://doi.org/10.1083/jcb.200604123
pmid: 17030986
|
264 |
Young K M, Fogarty M, Kessaris N, Richardson W D (2007). Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci, 27(31): 8286–8296
https://doi.org/10.1523/JNEUROSCI.0476-07.2007
pmid: 17670975
|
265 |
Zappaterra M D, Lisgo S N, Lindsay S, Gygi S P, Walsh C A, Ballif B A (2007). A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res, 6(9): 3537–3548
https://doi.org/10.1021/pr070247w
pmid: 17696520
|
266 |
Zappone M V, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382
pmid: 10804179
|
267 |
Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35
https://doi.org/10.1002/glia.20044
pmid: 15326612
|
268 |
Zecevic N, Chen Y, Filipovic R (2005). Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol, 491(2): 109–122
https://doi.org/10.1002/cne.20714
pmid: 16127688
|
269 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033
pmid: 18295581
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|