|
|
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins |
Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang( ) |
| Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA |
|
|
|
|
Abstract BACKGROUND: Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein–protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE: In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS: A total of 218 publications were reviewed in this article, a majority of which were published after 2004. We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS: By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein–protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION: While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein–protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
|
| Keywords
AML1-ETO
E2A-Pbx1
E-proteins
chromosomal translocation
transcription
leukemia
|
|
Corresponding Author(s):
Jinsong Zhang
|
|
Just Accepted Date: 18 July 2016
Online First Date: 10 August 2016
Issue Date: 30 August 2016
|
|
| 1 |
Ahn E Y, DeKelver R C, Lo M C, Nguyen T A, Matsuura S, Boyapati A, Pandit S, Fu X D, Zhang D E (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell, 42(2): 185–198
https://doi.org/10.1016/j.molcel.2011.03.014
pmid: 21504830
|
| 2 |
Ahn E Y, Yan M, Malakhova O A, Lo M C, Boyapati A, Ommen H B, Hines R, Hokland P, Zhang D E (2008). Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc Natl Acad Sci USA, 105(44): 17103–17108
https://doi.org/10.1073/pnas.0802696105
pmid: 18952841
|
| 3 |
Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, Sciurpi M T, Mariano A R, Minardi S P, Luzi L, Muller H, Di Fiore P P, Frosina G, Pelicci P G (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest, 112(11): 1751–1761
https://doi.org/10.1172/JCI17595
pmid: 14660751
|
| 4 |
Amann J M, Nip J, Strom D K, Lutterbach B, Harada H, Lenny N, Downing J R, Meyers S, Hiebert S W (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol, 21(19): 6470–6483
https://doi.org/10.1128/MCB.21.19.6470-6483.2001
pmid: 11533236
|
| 5 |
Anantharaman A, Lin I J, Barrow J, Liang S Y, Masannat J, Strouboulis J, Huang S, Bungert J (2011). Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol, 31(7): 1332–1343
https://doi.org/10.1128/MCB.01186-10
pmid: 21282467
|
| 6 |
Arkin M R, Tang Y, Wells J A (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol, 21(9): 1102–1114
https://doi.org/10.1016/j.chembiol.2014.09.001
pmid: 25237857
|
| 7 |
Aspland S E, Bendall H H, Murre C (2001). The role of E2A-PBX1 in leukemogenesis. Oncogene, 20(40): 5708–5717
https://doi.org/10.1038/sj.onc.1204592
pmid: 11607820
|
| 8 |
Azzarito V, Long K, Murphy N S, Wilson A J (2013). Inhibition of a-helix-mediated protein-protein interactions using designed molecules. Nat Chem, 5(3): 161–173
https://doi.org/10.1038/nchem.1568
pmid: 23422557
|
| 9 |
Bain G, Engel I, Robanus Maandag E C, te Riele H P, Voland J R, Sharp L L, Chun J, Huey B, Pinkel D, Murre C (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol, 17(8): 4782–4791
https://doi.org/10.1128/MCB.17.8.4782
pmid: 9234734
|
| 10 |
Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G, Mascagni P, Lübbert M, Dello Sbarba P, Santini V (2008). Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene, 27(12): 1767–1778
https://doi.org/10.1038/sj.onc.1210820
pmid: 17891169
|
| 11 |
Bartfeld D, Shimon L, Couture G C, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z (2002). DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure, 10(10): 1395–1407
https://doi.org/10.1016/S0969-2126(02)00853-5
pmid: 12377125
|
| 12 |
Bayly R, Chuen L, Currie R A, Hyndman B D, Casselman R, Blobel G A, LeBrun D P (2004). E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J Biol Chem, 279(53): 55362–55371
https://doi.org/10.1074/jbc.M408654200
pmid: 15507449
|
| 13 |
Bayly R, Murase T, Hyndman B D, Savage R, Nurmohamed S, Munro K, Casselman R, Smith S P, LeBrun D P (2006). Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol, 26(17): 6442–6452
https://doi.org/10.1128/MCB.02025-05
pmid: 16914730
|
| 14 |
Berardi M J, Sun C, Zehr M, Abildgaard F, Peng J, Speck N A, Bushweller J H (1999). The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure, 7(10): 1247–1256
https://doi.org/10.1016/S0969-2126(00)80058-1
pmid: 10545320
|
| 15 |
Bravo J, Li Z, Speck N A, Warren A J (2001). The leukemia-associated AML1 (Runx1)—CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol, 8(4): 371–378
https://doi.org/10.1038/86264
pmid: 11276260
|
| 16 |
Breig O, Bras S, Martinez Soria N, Osman D, Heidenreich O, Haenlin M, Waltzer L (2014). Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia, 28(6): 1271–1279
https://doi.org/10.1038/leu.2013.376
pmid: 24342949
|
| 17 |
Burel S A, Harakawa N, Zhou L, Pabst T, Tenen D G, Zhang D E (2001). Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol, 21(16): 5577–5590
https://doi.org/10.1128/MCB.21.16.5577-5590.2001
pmid: 11463839
|
| 18 |
Calabi F, Cilli V (1998). CBFA2T1, a gene rearranged in human leukemia, is a member of a multigene family. Genomics, 52(3): 332–341
https://doi.org/10.1006/geno.1998.5429
pmid: 9790752
|
| 19 |
Calabi F, Pannell R, Pavloska G (2001). Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol, 21(16): 5658–5666
https://doi.org/10.1128/MCB.21.16.5658-5666.2001
pmid: 11463846
|
| 20 |
Chang K S, Fan Y H, Stass S A, Estey E H, Wang G, Trujillo J M, Erickson P, Drabkin H (1993). Expression of AML1-ETO fusion transcripts and detection of minimal residual disease in t(8;21)-positive acute myeloid leukemia. Oncogene, 8(4): 983–988
pmid: 8455949
|
| 21 |
Chen F E, Huang D B, Chen Y Q, Ghosh G (1998). Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature, 391(6665): 410–413
https://doi.org/10.1038/34956
pmid: 9450761
|
| 22 |
Chen J, Odenike O, Rowley J D (2010). Leukaemogenesis: more than mutant genes. Nat Rev Cancer, 10(1): 23–36
https://doi.org/10.1038/nrc2765
pmid: 20029422
|
| 23 |
Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, Shi Y, Armstrong S A, Roeder R G (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev, 29(20): 2123–2139
https://doi.org/10.1101/gad.267278.115
pmid: 26494788
|
| 24 |
Chevallier N, Corcoran C M, Lennon C, Hyjek E, Chadburn A, Bardwell V J, Licht J D, Melnick A (2004). ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood, 103(4): 1454–1463
https://doi.org/10.1182/blood-2003-06-2081
pmid: 14551142
|
| 25 |
Cho Y, Gorina S, Jeffrey P D, Pavletich N P (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170): 346–355
https://doi.org/10.1126/science.8023157
pmid: 8023157
|
| 26 |
Chou F S, Griesinger A, Wunderlich M, Lin S, Link K A, Shrestha M, Goyama S, Mizukawa B, Shen S, Marcucci G, Mulloy J C (2012). The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood, 120(4): 709–719
https://doi.org/10.1182/blood-2012-01-403212
pmid: 22337712
|
| 27 |
Chou F S, Wunderlich M, Griesinger A, Mulloy J C (2011). N-Ras(G12D) induces features of stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood, 117(7): 2237–2240
https://doi.org/10.1182/blood-2010-01-264119
pmid: 21200020
|
| 28 |
Chyla B J, Moreno-Miralles I, Steapleton M A, Thompson M A, Bhaskara S, Engel M, Hiebert S W (2008). Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol, 28(20): 6234–6247
https://doi.org/10.1128/MCB.00404-08
pmid: 18710942
|
| 29 |
Cisse B, Caton M L, Lehner M, Maeda T, Scheu S, Locksley R, Holmberg D, Zweier C, den Hollander N S, Kant S G, Holter W, Rauch A, Zhuang Y, Reizis B (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell, 135(1): 37–48
https://doi.org/10.1016/j.cell.2008.09.016
pmid: 18854153
|
| 30 |
Corpora T, Roudaia L, Oo Z M, Chen W, Manuylova E, Cai X, Chen M J, Cierpicki T, Speck N A, Bushweller J H (2010). Structure of the AML1-ETO NHR3-PKA(RIIa) complex and its contribution to AML1-ETO activity. J Mol Biol, 402(3): 560–577
https://doi.org/10.1016/j.jmb.2010.08.007
pmid: 20708017
|
| 31 |
D’Alonzo R C, Selvamurugan N, Karsenty G, Partridge N C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822
https://doi.org/10.1074/jbc.M107082200
pmid: 11641401
|
| 32 |
Davis J N, Williams B J, Herron J T, Galiano F J, Meyers S (1999). ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene, 18(6): 1375–1383
https://doi.org/10.1038/sj.onc.1202412
pmid: 10022820
|
| 33 |
de Bruijn M F, Speck N A (2004). Core-binding factors in hematopoiesis and immune function. Oncogene, 23(24): 4238–4248
https://doi.org/10.1038/sj.onc.1207763
pmid: 15156179
|
| 34 |
de Guzman C G, Warren A J, Zhang Z, Gartland L, Erickson P, Drabkin H, Hiebert S W, Klug C A (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol, 22(15): 5506–5517
https://doi.org/10.1128/MCB.22.15.5506-5517.2002
pmid: 12101243
|
| 35 |
de Pooter R F, Kee B L (2010). E proteins and the regulation of early lymphocyte development. Immunol Rev, 238(1): 93–109
https://doi.org/10.1111/j.1600-065X.2010.00957.x
pmid: 20969587
|
| 36 |
Denis C M, Langelaan D N, Kirlin A C, Chitayat S, Munro K, Spencer H L, LeBrun D P, Smith S P (2014). Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300. Nucleic Acids Res, 42(11): 7370–7382
https://doi.org/10.1093/nar/gku206
pmid: 24682819
|
| 37 |
Downing J R (1999). The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 106(2): 296–308
https://doi.org/10.1046/j.1365-2141.1999.01377.x
pmid: 10460585
|
| 38 |
El Omari K, Hoosdally S J, Tuladhar K, Karia D, Hall-Ponselé E, Platonova O, Vyas P, Patient R, Porcher C, Mancini E J (2013). Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Reports, 4(1): 135–147
https://doi.org/10.1016/j.celrep.2013.06.008
pmid: 23831025
|
| 39 |
Elagib K E, Racke F K, Mogass M, Khetawat R, Delehanty L L, Goldfarb A N (2003). RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood, 101(11): 4333–4341
https://doi.org/10.1182/blood-2002-09-2708
pmid: 12576332
|
| 40 |
Engel I, Murre C (1999). Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc Natl Acad Sci USA, 96(3): 996–1001
https://doi.org/10.1073/pnas.96.3.996
pmid: 9927682
|
| 41 |
Erickson P, Gao J, Chang K S, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80(7): 1825–1831
pmid: 1391946
|
| 42 |
Erickson P F, Dessev G, Lasher R S, Philips G, Robinson M, Drabkin H A (1996). ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood, 88(5): 1813–1823
pmid: 8781439
|
| 43 |
Erickson P F, Robinson M, Owens G, Drabkin H A (1994). The ETO portion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionarily conserved, putative transcription factor. Cancer Res, 54(7): 1782–1786
pmid: 8137293
|
| 44 |
Fazi F, Racanicchi S, Zardo G, Starnes L M, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12(5): 457–466
https://doi.org/10.1016/j.ccr.2007.09.020
pmid: 17996649
|
| 45 |
Feinstein P G, Kornfeld K, Hogness D S, Mann R S (1995). Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics, 140(2): 573–586
pmid: 7498738
|
| 46 |
Fenske T S, Pengue G, Mathews V, Hanson P T, Hamm S E, Riaz N, Graubert T A (2004). Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA, 101(42): 15184–15189
https://doi.org/10.1073/pnas.0400751101
pmid: 15477599
|
| 47 |
Figueroa M E, Abdel-Wahab O, Lu C, Ward P S, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez H F, Tallman M S, Sun Z, Wolniak K, Peeters J K, Liu W, Choe S E, Fantin V R, Paietta E, Löwenberg B, Licht J D, Godley L A, Delwel R, Valk P J, Thompson C B, Levine R L, Melnick A (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 18(6): 553–567
https://doi.org/10.1016/j.ccr.2010.11.015
pmid: 21130701
|
| 48 |
Fischer M A, Moreno-Miralles I, Hunt A, Chyla B J, Hiebert S W (2012). Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J, 31(6): 1494–1505
https://doi.org/10.1038/emboj.2011.500
pmid: 22266796
|
| 49 |
Fracchiolla N S, Colombo G, Finelli P, Maiolo A T, Neri A (1998). EHT, a new member of the MTG8/ETO gene family, maps on 20q11 region and is deleted in acute myeloid leukemias. Blood, 92(9): 3481–3484
pmid: 9787195
|
| 50 |
Frank R, Zhang J, Uchida H, Meyers S, Hiebert S W, Nimer S D (1995). The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene, 11(12): 2667–2674
pmid: 8545124
|
| 51 |
Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T (2001). MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene, 20(43): 6225–6232
https://doi.org/10.1038/sj.onc.1204794
pmid: 11593431
|
| 52 |
Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, Nagase T, Yokoyama Y, Ohki M (1998). The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood, 91(11): 4028–4037
pmid: 9596646
|
| 53 |
Gamsjaeger R, Liew C K, Loughlin F E, Crossley M, Mackay J P (2007). Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci, 32(2): 63–70
https://doi.org/10.1016/j.tibs.2006.12.007
pmid: 17210253
|
| 54 |
Gao X N, Yan F, Lin J, Gao L, Lu X L, Wei S C, Shen N, Pang J X, Ning Q Y, Komeno Y, Deng A L, Xu Y H, Shi J L, Li Y H, Zhang D E, Nervi C, Liu S J, Yu L (2015). AML1/ETO cooperates with HIF1a to promote leukemogenesis through DNMT3a transactivation. Leukemia, 29(8): 1730–1740
https://doi.org/10.1038/leu.2015.56
pmid: 25727291
|
| 55 |
Gardini A, Cesaroni M, Luzi L, Okumura A J, Biggs J R, Minardi S P, Venturini E, Zhang D E, Pelicci P G, Alcalay M (2008). AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet, 4(11): e1000275
https://doi.org/10.1371/journal.pgen.1000275
pmid: 19043539
|
| 56 |
Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci P G, Lazar M A (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol, 18(12): 7185–7191
https://doi.org/10.1128/MCB.18.12.7185
pmid: 9819405
|
| 57 |
Geng H, Brennan S, Milne T A, Chen W Y, Li Y, Hurtz C, Kweon S M, Zickl L, Shojaee S, Neuberg D, Huang C, Biswas D, Xin Y, Racevskis J, Ketterling R P, Luger S M, Lazarus H, Tallman M S, Rowe J M, Litzow M R, Guzman M L, Allis C D, Roeder R G, Müschen M, Paietta E, Elemento O, Melnick A M (2012). Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov, 2(11): 1004–1023
https://doi.org/10.1158/2159-8290.CD-12-0208
pmid: 23107779
|
| 58 |
Goardon N, Lambert J A, Rodriguez P, Nissaire P, Herblot S, Thibault P, Dumenil D, Strouboulis J, Romeo P H, Hoang T (2006). ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J, 25(2): 357–366
https://doi.org/10.1038/sj.emboj.7600934
pmid: 16407974
|
| 59 |
Goemans B F, Zwaan C M, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen A H, Hählen K, Reinhardt D, Creutzig U, Kaspers G J, Heinrich M C (2005). Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia, 19(9): 1536–1542
https://doi.org/10.1038/sj.leu.2403870
pmid: 16015387
|
| 60 |
Gow C H, Guo C, Wang D, Hu Q, Zhang J (2014). Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res, 42(1): 137–152
https://doi.org/10.1093/nar/gkt855
pmid: 24064250
|
| 61 |
Grisolano J L, O’Neal J, Cain J, Tomasson M H (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA, 100(16): 9506–9511
https://doi.org/10.1073/pnas.1531730100
pmid: 12881486
|
| 62 |
Gross C T, McGinnis W (1996). DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J, 15(8): 1961–1970
pmid: 8617243
|
| 63 |
Gu W, Roeder R G (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90(4): 595–606
https://doi.org/10.1016/S0092-8674(00)80521-8
pmid: 9288740
|
| 64 |
Guenther M G, Lane W S, Fischle W, Verdin E, Lazar M A, Shiekhattar R (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev, 14(9): 1048–1057
pmid: 10809664
|
| 65 |
Guo C, Hu Q, Yan C, Zhang J (2009). Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol Cell Biol, 29(10): 2644–2657
https://doi.org/10.1128/MCB.00073-09
pmid: 19289505
|
| 66 |
Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P (2008). Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood, 112(7): 2738–2749
https://doi.org/10.1182/blood-2008-03-146605
pmid: 18625887
|
| 67 |
Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G, Metzeler K H, Herold T, Bamopoulos S A, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin N P, Schneider S, Hopfner K P, Graf A, Krebs S, Blum H, Middeke J M, Stölzel F, Thiede C, Wolf S, Bohlander S K, Preiss C, Chen-Wichmann L, Wichmann C, Sauerland M C, Büchner T, Berdel W E, Wörmann B J, Braess J, Hiddemann W, Spiekermann K, Greif P A (2016). ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun, 7: 11733
https://doi.org/10.1038/ncomms11733
pmid: 27252013
|
| 68 |
Hassig C A, Fleischer T C, Billin A N, Schreiber S L, Ayer D E (1997). Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell, 89(3): 341–347
https://doi.org/10.1016/S0092-8674(00)80214-7
pmid: 9150133
|
| 69 |
Hatlen M A, Arora K, Vacic V, Grabowska E A, Liao W, Riley-Gillis B, Oschwald D M, Wang L, Joergens J E, Shih A H, Rapaport F, Gu S, Voza F, Asai T, Neel B G, Kharas M G, Gonen M, Levine R L, Nimer S D (2016). Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. J Exp Med, 213(1): 25–34
https://doi.org/10.1084/jem.20150524
pmid: 26666262
|
| 70 |
Heery D M, Kalkhoven E, Hoare S, Parker M G (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634): 733–736
https://doi.org/10.1038/42750
pmid: 9192902
|
| 71 |
Heinzel T, Lavinsky R M, Mullen T M, Söderstrom M, Laherty C D, Torchia J, Yang W M, Brard G, Ngo S D, Davie J R, Seto E, Eisenman R N, Rose D W, Glass C K, Rosenfeld M G (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 387(6628): 43–48
https://doi.org/10.1038/387043a0
pmid: 9139820
|
| 72 |
Hess J L, Hug B A (2004). Fusion-protein truncation provides new insights into leukemogenesis. Proc Natl Acad Sci USA, 101(49): 16985–16986
https://doi.org/10.1073/pnas.0407898101
pmid: 15572447
|
| 73 |
Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh E J, Downing J R (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 1(1): 63–74
https://doi.org/10.1016/S1535-6108(02)00016-8
pmid: 12086889
|
| 74 |
Higueruelo A P, Jubb H, Blundell T L (2013). Protein-protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol, 13(5): 791–796
https://doi.org/10.1016/j.coph.2013.05.009
pmid: 23735579
|
| 75 |
Hildebrand D, Tiefenbach J, Heinzel T, Grez M, Maurer A B (2001). Multiple regions of ETO cooperate in transcriptional repression. J Biol Chem, 276(13): 9889–9895
https://doi.org/10.1074/jbc.M010582200
pmid: 11150306
|
| 76 |
Huang X, Peng J W, Speck N A, Bushweller J H (1999). Solution structure of core binding factor beta and map of the CBF alpha binding site. Nat Struct Biol, 6(7): 624–627
https://doi.org/10.1038/10670
pmid: 10404216
|
| 77 |
Hug B A, Lee S Y, Kinsler E L, Zhang J, Lazar M A (2002). Cooperative function of Aml1-ETO corepressor recruitment domains in the expansion of primary bone marrow cells. Cancer Res, 62(10): 2906–2912
pmid: 12019171
|
| 78 |
Hunt A, Fischer M, Engel M E, Hiebert S W (2011). Mtg16/Eto2 contributes to murine T-cell development. Mol Cell Biol, 31(13): 2544–2551
https://doi.org/10.1128/MCB.01458-10
pmid: 21536648
|
| 79 |
Inaba T, Roberts W M, Shapiro L H, Jolly K W, Raimondi S C, Smith S D, Look A T (1992). Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science, 257(5069): 531–534
https://doi.org/10.1126/science.1386162
pmid: 1386162
|
| 80 |
Ito Y (2004). Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene, 23(24): 4198–4208
https://doi.org/10.1038/sj.onc.1207755
pmid: 15156173
|
| 81 |
Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J, Nimer S D (2000). Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem, 275(51): 40282–40287
https://doi.org/10.1074/jbc.C000485200
pmid: 11032826
|
| 82 |
Jankovic V, Ciarrocchi A, Boccuni P, DeBlasio T, Benezra R, Nimer S D (2007). Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci USA, 104(4): 1260–1265
https://doi.org/10.1073/pnas.0607894104
pmid: 17227850
|
| 83 |
Jiao B, Wu C F, Liang Y, Chen H M, Xiong S M, Chen B, Shi J Y, Wang Y Y, Wang J H, Chen Y, Li J M, Gu L J, Tang J Y, Shen Z X, Gu B W, Zhao W L, Chen Z, Chen S J (2009). AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia, 23(9): 1598–1604
https://doi.org/10.1038/leu.2009.104
pmid: 19458628
|
| 84 |
Jin W, Wu K, Li Y Z, Yang W T, Zou B, Zhang F, Zhang J, Wang K K (2013). AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene, 32(15): 1978–1987
https://doi.org/10.1038/onc.2012.204
pmid: 22641217
|
| 85 |
Kamps M P, Baltimore D (1993). E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol, 13(1): 351–357
https://doi.org/10.1128/MCB.13.1.351
pmid: 8093327
|
| 86 |
Kamps M P, Murre C, Sun X H, Baltimore D (1990). A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell, 60(4): 547–555
https://doi.org/10.1016/0092-8674(90)90658-2
pmid: 1967983
|
| 87 |
Kee B L (2009). E and ID proteins branch out. Nat Rev Immunol, 9(3): 175–184
https://doi.org/10.1038/nri2507
pmid: 19240756
|
| 88 |
Kim W Y, Sieweke M, Ogawa E, Wee H J, Englmeier U, Graf T, Ito Y (1999). Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J, 18(6): 1609–1620
https://doi.org/10.1093/emboj/18.6.1609
pmid: 10075931
|
| 89 |
Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M (1998). The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol, 18(2): 846–858
https://doi.org/10.1128/MCB.18.2.846
pmid: 9447981
|
| 90 |
Klampfer L, Zhang J, Zelenetz A O, Uchida H, Nimer S D (1996). The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA, 93(24): 14059–14064
https://doi.org/10.1073/pnas.93.24.14059
pmid: 8943060
|
| 91 |
Klisovic M I, Maghraby E A, Parthun M R, Guimond M, Sklenar A R, Whitman S P, Chan K K, Murphy T, Anon J, Archer K J, Rush L J, Plass C, Grever M R, Byrd J C, Marcucci G (2003). Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia, 17(2): 350–358
https://doi.org/10.1038/sj.leu.2402776
pmid: 12592335
|
| 92 |
Komori A, Sueoka E, Fujiki H, Ishii M, Kozu T (1999). Association of MTG8 (ETO/CDR), a leukemia-related protein, with serine/threonine protein kinases and heat shock protein HSP90 in human hematopoietic cell lines. Jpn J Cancer Res, 90(1): 60–68
https://doi.org/10.1111/j.1349-7006.1999.tb00666.x
pmid: 10076566
|
| 93 |
Krauth M T, Eder C, Alpermann T, Bacher U, Nadarajah N, Kern W, Haferlach C, Haferlach T, Schnittger S (2014). High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia, 28(7): 1449–1458
https://doi.org/10.1038/leu.2014.4
pmid: 24402164
|
| 94 |
Kwok C, Zeisig B B, Dong S, So C W (2010). The role of CBFbeta in AML1-ETO’s activity. Blood, 115(15): 3176–3177
https://doi.org/10.1182/blood-2009-12-260570
pmid: 20395424
|
| 95 |
Kwok C, Zeisig B B, Qiu J, Dong S, So C W (2009). Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA, 106(8): 2853–2858
https://doi.org/10.1073/pnas.0810558106
pmid: 19202074
|
| 96 |
Laherty C D, Yang W M, Sun J M, Davie J R, Seto E, Eisenman R N (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89(3): 349–356
https://doi.org/10.1016/S0092-8674(00)80215-9
pmid: 9150134
|
| 97 |
Laraia L, McKenzie G, Spring D R, Venkitaraman A R, Huggins D J (2015). Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem Biol, 22(6): 689–703
https://doi.org/10.1016/j.chembiol.2015.04.019
pmid: 26091166
|
| 98 |
Lenny N, Meyers S, Hiebert S W (1995). Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene, 11(9): 1761–1769
pmid: 7478604
|
| 99 |
Li F Q, Person R E, Takemaru K, Williams K, Meade-White K, Ozsahin A H, Güngör T, Moon R T, Horwitz M (2004). Lymphoid enhancer factor-1 links two hereditary leukemia syndromes through core-binding factor alpha regulation of ELA2. J Biol Chem, 279(4): 2873–2884
https://doi.org/10.1074/jbc.M310759200
pmid: 14594802
|
| 100 |
Li J, Wang J, Wang J, Nawaz Z, Liu J M, Qin J, Wong J (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J, 19(16): 4342–4350
https://doi.org/10.1093/emboj/19.16.4342
pmid: 10944117
|
| 101 |
Li L M, Chen Z X, Cen J N, Shen H J, Yao L, Wang Y Y, Qi X F (2012). Monitoring the expression ratio of AML1-ETO9a isoform in t(8;21) acute myeloid leukemia and its significance. Zhonghua Xue Ye Xue Za Zhi, 33(1): 1–5
pmid: 22575183
|
| 102 |
Li Q L, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi X Z, Lee K Y, Nomura S, Lee C W, Han S B, Kim H M, Kim W J, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae S C, Ito Y (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1): 113–124
https://doi.org/10.1016/S0092-8674(02)00690-6
pmid: 11955451
|
| 103 |
Li Y, Gao L, Luo X, Wang L, Gao X, Wang W, Sun J, Dou L, Li J, Xu C, Wang L, Zhou M, Jiang M, Zhou J, Caligiuri M A, Nervi C, Bloomfield C D, Marcucci G, Yu L (2013). Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood, 121(3): 499–509
https://doi.org/10.1182/blood-2012-07-444729
pmid: 23223432
|
| 104 |
Li Y, Wang H, Wang X, Jin W, Tan Y, Fang H, Chen S, Chen Z, Wang K (2015a). Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood, 127(2):233–242
|
| 105 |
Li Z, Chen P, Su R, Li Y, Hu C, Wang Y, Arnovitz S, He M, Gurbuxani S, Zuo Z, Elkahloun A G, Li S, Weng H, Huang H, Neilly M B, Wang S, Olson E N, Larson R A, Le Beau M M, Zhang J, Jiang X, Wei M, Jin J, Liu P P, Chen J (2015b). Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 126(17): 2005–2015
https://doi.org/10.1182/blood-2015-04-639062
pmid: 26361793
|
| 106 |
Li Z, Lu J, Sun M, Mi S, Zhang H, Luo R T, Chen P, Wang Y, Yan M, Qian Z, Neilly M B, Jin J, Zhang Y, Bohlander S K, Zhang D E, Larson R A, Le Beau M M, Thirman M J, Golub T R, Rowley J D, Chen J (2008). Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA, 105(40): 15535–15540
https://doi.org/10.1073/pnas.0808266105
pmid: 18832181
|
| 107 |
Libermann T A, Pan Z, Akbarali Y, Hetherington C J, Boltax J, Yergeau D A, Zhang D E (1999). AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J Biol Chem, 274(35): 24671–24676
https://doi.org/10.1074/jbc.274.35.24671
pmid: 10455134
|
| 108 |
Licciulli S, Cambiaghi V, Scafetta G, Gruszka A M, Alcalay M (2010). Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation. Leukemia, 24(2): 429–437
https://doi.org/10.1038/leu.2009.247
pmid: 20010624
|
| 109 |
Linggi B, Müller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel W E, van der Reijden B, Quelle D E, Rowley J D, Cleveland J, Jansen J H, Pandolfi P P, Hiebert S W (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med, 8(7): 743–750
https://doi.org/10.1038/nm726
pmid: 12091906
|
| 110 |
Liu S, Shen T, Huynh L, Klisovic M I, Rush L J, Ford J L, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman S P, Chang K S, Byrd J C, Perrotti D, Plass C, Marcucci G (2005). Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res, 65(4): 1277–1284
https://doi.org/10.1158/0008-5472.CAN-04-4532
pmid: 15735013
|
| 111 |
Liu Y, Chen W, Gaudet J, Cheney M D, Roudaia L, Cierpicki T, Klet R C, Hartman K, Laue T M, Speck N A, Bushweller J H (2007). Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell, 11(6): 483–497
https://doi.org/10.1016/j.ccr.2007.04.010
pmid: 17560331
|
| 112 |
Liu Y, Cheney M D, Gaudet J J, Chruszcz M, Lukasik S M, Sugiyama D, Lary J, Cole J, Dauter Z, Minor W, Speck N A, Bushweller J H (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell, 9(4): 249–260
https://doi.org/10.1016/j.ccr.2006.03.012
pmid: 16616331
|
| 113 |
Lo M C, Peterson L F, Yan M, Cong X, Jin F, Shia W J, Matsuura S, Ahn E Y, Komeno Y, Ly M, Ommen H B, Chen I M, Hokland P, Willman C L, Ren B, Zhang D E (2012). Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood, 120(7): 1473–1484
https://doi.org/10.1182/blood-2011-12-395335
pmid: 22740448
|
| 114 |
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J, Groner Y (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta, 1855(2): 131–143
pmid: 25641675
|
| 115 |
Lu Q, Knoepfler P S, Scheele J, Wright D D, Kamps M P (1995). Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol Cell Biol, 15(7): 3786–3795
https://doi.org/10.1128/MCB.15.7.3786
pmid: 7791786
|
| 116 |
Lu Q, Wright D D, Kamps M P (1994). Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol, 14(6): 3938–3948
https://doi.org/10.1128/MCB.14.6.3938
pmid: 7910944
|
| 117 |
Lutterbach B, Sun D, Schuetz J, Hiebert S W (1998a). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol, 18(6): 3604–3611
https://doi.org/10.1128/MCB.18.6.3604
pmid: 9584201
|
| 118 |
Lutterbach B, Westendorf J J, Linggi B, Patten A, Moniwa M, Davie J R, Huynh K D, Bardwell V J, Lavinsky R M, Rosenfeld M G, Glass C, Seto E, Hiebert S W (1998b). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol, 18(12): 7176–7184
https://doi.org/10.1128/MCB.18.12.7176
pmid: 9819404
|
| 119 |
Mao S, Frank R C, Zhang J, Miyazaki Y, Nimer S D (1999). Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol, 19(5): 3635–3644
https://doi.org/10.1128/MCB.19.5.3635
pmid: 10207087
|
| 120 |
Martens J H, Mandoli A, Simmer F, Wierenga B J, Saeed S, Singh A A, Altucci L, Vellenga E, Stunnenberg H G (2012). ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood, 120(19): 4038–4048
https://doi.org/10.1182/blood-2012-05-429050
pmid: 22983443
|
| 121 |
Massari M E, Murre C (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol, 20(2): 429–440
https://doi.org/10.1128/MCB.20.2.429-440.2000
pmid: 10611221
|
| 122 |
Matheny C J, Speck M E, Cushing P R, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck C L, Gu T L, Griffey S M, Bushweller J H, Speck N A (2007). Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J, 26(4): 1163–1175
https://doi.org/10.1038/sj.emboj.7601568
pmid: 17290219
|
| 123 |
McGhee L, Bryan J, Elliott L, Grimes H L, Kazanjian A, Davis J N, Meyers S (2003). Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem, 89(5): 1005–1018
https://doi.org/10.1002/jcb.10548
pmid: 12874834
|
| 124 |
Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J, Gering M, Patient R, Hostert A, Grosveld F (2006). Novel binding partners of Ldb1 are required for haematopoietic development. Development, 133(24): 4913–4923
https://doi.org/10.1242/dev.02656
pmid: 17108004
|
| 125 |
Mellentin J D, Murre C, Donlon T A, McCaw P S, Smith S D, Carroll A J, McDonald M E, Baltimore D, Cleary M L (1989). The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science, 246(4928): 379–382
https://doi.org/10.1126/science.2799390
pmid: 2799390
|
| 126 |
Melnick A M, Westendorf J J, Polinger A, Carlile G W, Arai S, Ball H J, Lutterbach B, Hiebert S W, Licht J D (2000). The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol, 20(6): 2075–2086
https://doi.org/10.1128/MCB.20.6.2075-2086.2000
pmid: 10688654
|
| 127 |
Meyers S, Downing J R, Hiebert S W (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol, 13(10): 6336–6345
https://doi.org/10.1128/MCB.13.10.6336
pmid: 8413232
|
| 128 |
Meyers S, Lenny N, Hiebert S W (1995). The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol, 15(4): 1974–1982
https://doi.org/10.1128/MCB.15.4.1974
pmid: 7891692
|
| 129 |
Micol J B, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O, Lacombe C, Lapillonne H, Etancelin P, Figeac M, Renneville A, Castaigne S, Leverger G, Ifrah N, Dombret H, Preudhomme C, Abdel-Wahab O, Jourdan E (2014). Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood, 124(9): 1445–1449
https://doi.org/10.1182/blood-2014-04-571018
pmid: 24973361
|
| 130 |
Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar M A, Landsberger N, Nervi C, Pelicci P G (2000). Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell, 5(5): 811–820
https://doi.org/10.1016/S1097-2765(00)80321-4
pmid: 10882117
|
| 131 |
Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M (1993). The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J, 12(7): 2715–2721
pmid: 8334990
|
| 132 |
Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M (1995). Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res, 23(14): 2762–2769
https://doi.org/10.1093/nar/23.14.2762
pmid: 7651838
|
| 133 |
Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA, 88(23): 10431–10434
https://doi.org/10.1073/pnas.88.23.10431
pmid: 1720541
|
| 134 |
Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M, Puccetti E, Ruthardt M, deVos S, Hiebert S W, Koeffler H P, Berdel W E, Serve H (2004). Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol, 24(7): 2890–2904
https://doi.org/10.1128/MCB.24.7.2890-2904.2004
pmid: 15024077
|
| 135 |
Mulloy J C, Cammenga J, Berguido F J, Wu K, Zhou P, Comenzo R L, Jhanwar S, Moore M A, Nimer S D (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood, 102(13): 4369–4376
https://doi.org/10.1182/blood-2003-05-1762
pmid: 12946995
|
| 136 |
Mulloy J C, Cammenga J, MacKenzie K L, Berguido F J, Moore M A, Nimer S D (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood, 99(1): 15–23
https://doi.org/10.1182/blood.V99.1.15
pmid: 11756147
|
| 137 |
Mulloy J C, Jankovic V, Wunderlich M, Delwel R, Cammenga J, Krejci O, Zhao H, Valk P J, Lowenberg B, Nimer S D (2005). AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc Natl Acad Sci USA, 102(11): 4016–4021
https://doi.org/10.1073/pnas.0404701102
pmid: 15731354
|
| 138 |
Nagata T, Gupta V, Sorce D, Kim W Y, Sali A, Chait B T, Shigesada K, Ito Y, Werner M H (1999). Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol, 6(7): 615–619
https://doi.org/10.1038/10658
pmid: 10404214
|
| 139 |
Nagy L, Kao H Y, Chakravarti D, Lin R J, Hassig C A, Ayer D E, Schreiber S L, Evans R M (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89(3): 373–380
https://doi.org/10.1016/S0092-8674(00)80218-4
pmid: 9150137
|
| 140 |
Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S, Hoshida Y, Nakazawa T, Harada Y, Tatsumi N, Tsuboi A, Kawakami M, Oka Y, Oji Y, Aozasa K, Kawase I, Sugiyama H (2006). AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood, 107(8): 3303–3312
https://doi.org/10.1182/blood-2005-04-1656
pmid: 16380455
|
| 141 |
Nourse J, Mellentin J D, Galili N, Wilkinson J, Stanbridge E, Smith S D, Cleary M L (1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell, 60(4): 535–545
https://doi.org/10.1016/0092-8674(90)90657-Z
pmid: 1967982
|
| 142 |
Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 194(1): 314–331
https://doi.org/10.1006/viro.1993.1262
pmid: 8386878
|
| 143 |
Okuda T, Cai Z, Yang S, Lenny N, Lyu C J, van Deursen J M, Harada H, Downing J R (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91(9): 3134–3143
pmid: 9558367
|
| 144 |
Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330
https://doi.org/10.1016/S0092-8674(00)80986-1
pmid: 8565077
|
| 145 |
Okumura A J, Peterson L F, Okumura F, Boyapati A, Zhang D E (2008). t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood, 112(4): 1392–1401
https://doi.org/10.1182/blood-2007-11-124735
pmid: 18511808
|
| 146 |
Pabst T, Mueller B U, Harakawa N, Schoch C, Haferlach T, Behre G, Hiddemann W, Zhang D E, Tenen D G (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med, 7(4): 444–451
https://doi.org/10.1038/86515
pmid: 11283671
|
| 147 |
Park S, Chen W, Cierpicki T, Tonelli M, Cai X, Speck N A, Bushweller J H (2009a). Structure of the AML1-ETO eTAFH domain-HEB peptide complex and its contribution to AML1-ETO activity. Blood, 113(15): 3558–3567
https://doi.org/10.1182/blood-2008-06-161307
pmid: 19204326
|
| 148 |
Park S, Speck N A, Bushweller J H (2009b). The role of CBFbeta in AML1-ETO’s activity. Blood, 114(13): 2849–2850
https://doi.org/10.1182/blood-2009-07-231233
pmid: 19779050
|
| 149 |
Park S T, Nolan G P, Sun X H (1999). Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J Exp Med, 189(3): 501–508
https://doi.org/10.1084/jem.189.3.501
pmid: 9927512
|
| 150 |
Peterson L F, Yan M, Zhang D E (2007). The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood, 109(10): 4392–4398
https://doi.org/10.1182/blood-2006-03-012575
pmid: 17284535
|
| 151 |
Peterson L F, Zhang D E (2004). The 8;21 translocation in leukemogenesis. Oncogene, 23(24): 4255–4262
https://doi.org/10.1038/sj.onc.1207727
pmid: 15156181
|
| 152 |
Petrovick M S, Hiebert S W, Friedman A D, Hetherington C J, Tenen D G, Zhang D E (1998). Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol, 18(7): 3915–3925
https://doi.org/10.1128/MCB.18.7.3915
pmid: 9632776
|
| 153 |
Plevin M J, Zhang J, Guo C, Roeder R G, Ikura M (2006). The acute myeloid leukemia fusion protein AML1-ETO targets E proteins via a paired amphipathic helix-like TBP-associated factor homology domain. Proc Natl Acad Sci USA, 103(27): 10242–10247
https://doi.org/10.1073/pnas.0603463103
pmid: 16803958
|
| 154 |
Ptasinska A, Assi S A, Mannari D, James S R, Williamson D, Dunne J, Hoogenkamp M, Wu M, Care M, McNeill H, Cauchy P, Cullen M, Tooze R M, Tenen D G, Young B D, Cockerill P N, Westhead D R, Heidenreich O, Bonifer C (2012). Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia, 26(8): 1829–1841
https://doi.org/10.1038/leu.2012.49
pmid: 22343733
|
| 155 |
Ptasinska A, Assi S A, Martinez-Soria N, Imperato M R, Piper J, Cauchy P, Pickin A, James S R, Hoogenkamp M, Williamson D, Wu M, Tenen D G, Ott S, Westhead D R, Cockerill P N, Heidenreich O, Bonifer C (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Reports, 8(6): 1974–1988
https://doi.org/10.1016/j.celrep.2014.08.024
pmid: 25242324
|
| 156 |
Quong M W, Romanow W J, Murre C (2002). E protein function in lymphocyte development. Annu Rev Immunol, 20(1): 301–322
https://doi.org/10.1146/annurev.immunol.20.092501.162048
pmid: 11861605
|
| 157 |
Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J, Li Y, Ahn J, Abdel-Wahab O, Shih A, Lu C, Ward P S, Tsai J J, Hricik T, Tosello V, Tallman J E, Zhao X, Daniels D, Dai Q, Ciminio L, Aifantis I, He C, Fuks F, Tallman M S, Ferrando A, Nimer S, Paietta E, Thompson C B, Licht J D, Mason C E, Godley L A, Melnick A, Figueroa M E, Levine R L (2014). DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Reports, 9(5): 1841–1855
https://doi.org/10.1016/j.celrep.2014.11.004
pmid: 25482556
|
| 158 |
Rasmussen K D, Jia G, Johansen J V, Pedersen M T, Rapin N, Bagger F O, Porse B T, Bernard O A, Christensen J, Helin K (2015). Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev, 29(9): 910–922
https://doi.org/10.1101/gad.260174.115
pmid: 25886910
|
| 159 |
Reikvam H, Hatfield K J, Kittang A O, Hovland R, Bruserud Ø (2011). Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol, 2011: 104631
https://doi.org/10.1155/2011/104631
pmid: 21629739
|
| 160 |
Rhoades K L, Hetherington C J, Harakawa N, Yergeau D A, Zhou L, Liu L Q, Little M T, Tenen D G, Zhang D E (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 96(6): 2108–2115
pmid: 10979955
|
| 161 |
Rhoades K L, Hetherington C J, Rowley J D, Hiebert S W, Nucifora G, Tenen D G, Zhang D E (1996). Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA, 93(21): 11895–11900
https://doi.org/10.1073/pnas.93.21.11895
pmid: 8876234
|
| 162 |
Rolland T, Taşan M, Charloteaux B, Pevzner S J, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian S D, Yang X, Ghamsari L, Balcha D, Begg B E, Braun P, Brehme M, Broly M P, Carvunis A R, Convery-Zupan D, Corominas R, Coulombe-Huntington J, Dann E, Dreze M, Dricot A, Fan C, Franzosa E, Gebreab F, Gutierrez B J, Hardy M F, Jin M, Kang S, Kiros R, Lin G N, Luck K, MacWilliams A, Menche J, Murray R R, Palagi A, Poulin M M, Rambout X, Rasla J, Reichert P, Romero V, Ruyssinck E, Sahalie J M, Scholz A, Shah A A, Sharma A, Shen Y, Spirohn K, Tam S, Tejeda A O, Trigg S A, Twizere J C, Vega K, Walsh J, Cusick M E, Xia Y, Barabási A L, Iakoucheva L M, Aloy P, De Las Rivas J, Tavernier J, Calderwood M A, Hill D E, Hao T, Roth F P, Vidal M (2014). A proteome-scale map of the human interactome network. Cell, 159(5): 1212–1226
https://doi.org/10.1016/j.cell.2014.10.050
pmid: 25416956
|
| 163 |
Ross M E, Mahfouz R, Onciu M, Liu H C, Zhou X, Song G, Shurtleff S A, Pounds S, Cheng C, Ma J, Ribeiro R C, Rubnitz J E, Girtman K, Williams W K, Raimondi S C, Liang D C, Shih L Y, Pui C H, Downing J R (2004). Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 104(12): 3679–3687
https://doi.org/10.1182/blood-2004-03-1154
pmid: 15226186
|
| 164 |
Roudaia L, Cheney M D, Manuylova E, Chen W, Morrow M, Park S, Lee C T, Kaur P, Williams O, Bushweller J H, Speck N A (2009). CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood, 113(13): 3070–3079
https://doi.org/10.1182/blood-2008-03-147207
pmid: 19179469
|
| 165 |
Rowley J D (1973). Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet, 16(2): 109–112
pmid: 4125056
|
| 166 |
Rowley J D (1999). The role of chromosome translocations in leukemogenesis. Semin Hematol, 36(4 Suppl 7): 59–72
pmid: 10595755
|
| 167 |
Rual J F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G F, Gibbons F D, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg D S, Zhang L V, Wong S L, Franklin G, Li S, Albala J S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski R S, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick M E, Hill D E, Roth F P, Vidal M (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437(7062): 1173–1178
https://doi.org/10.1038/nature04209
pmid: 16189514
|
| 168 |
Salat D, Liefke R, Wiedenmann J, Borggrefe T, Oswald F (2008). ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Mol Cell Biol, 28(10): 3502–3512
https://doi.org/10.1128/MCB.01966-07
pmid: 18332109
|
| 169 |
Samuel A Stoner R D, Lo M C, Zhang D E (2013). Tumor Suppressor RASSF2 Is Downregulated By The RUNX1-ETO Fusion Protein In t(8;21)+ Acute Myeloid Leukemia. Blood, 122: 1268
|
| 170 |
Schessl C, Rawat V P, Cusan M, Deshpande A, Kohl T M, Rosten P M, Spiekermann K, Humphries R K, Schnittger S, Kern W, Hiddemann W, Quintanilla-Martinez L, Bohlander S K, Feuring-Buske M, Buske C (2005). The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest, 115(8): 2159–2168
https://doi.org/10.1172/JCI24225
pmid: 16025155
|
| 171 |
Scholl C, Gilliland D G, Fröhling S (2008). Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol, 35(4): 336–345
https://doi.org/10.1053/j.seminoncol.2008.04.004
pmid: 18692684
|
| 172 |
Schuh A H, Tipping A J, Clark A J, Hamlett I, Guyot B, Iborra F J, Rodriguez P, Strouboulis J, Enver T, Vyas P, Porcher C (2005). ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol, 25(23): 10235–10250
https://doi.org/10.1128/MCB.25.23.10235-10250.2005
pmid: 16287841
|
| 173 |
Schwartz R, Engel I, Fallahi-Sichani M, Petrie H T, Murre C (2006). Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA, 103(26): 9976–9981
https://doi.org/10.1073/pnas.0603728103
pmid: 16782810
|
| 174 |
Seita J, Weissman I L (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med, 2(6): 640–653
https://doi.org/10.1002/wsbm.86
pmid: 20890962
|
| 175 |
Shen Y, Zhu Y M, Fan X, Shi J Y, Wang Q R, Yan X J, Gu Z H, Wang Y Y, Chen B, Jiang C L, Yan H, Chen F F, Chen H M, Chen Z, Jin J, Chen S J (2011). Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood, 118(20): 5593–5603
https://doi.org/10.1182/blood-2011-03-343988
pmid: 21881046
|
| 176 |
Shia W J, Okumura A J, Yan M, Sarkeshik A, Lo M C, Matsuura S, Komeno Y, Zhao X, Nimer S D, Yates J R 3rd, Zhang D E (2012). PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood, 119(21): 4953–4962
https://doi.org/10.1182/blood-2011-04-347476
pmid: 22498736
|
| 177 |
Shiina M, Hamada K, Inoue-Bungo T, Shimamura M, Uchiyama A, Baba S, Sato K, Yamamoto M, Ogata K (2015). A novel allosteric mechanism on protein-DNA interactions underlying the phosphorylation-dependent regulation of Ets1 target gene expressions. J Mol Biol, 427(8): 1655–1669
https://doi.org/10.1016/j.jmb.2014.07.020
pmid: 25083921
|
| 178 |
Shrivastava T, Mino K, Babayeva N D, Baranovskaya O I, Rizzino A, Tahirov T H (2014). Structural basis of Ets1 activation by Runx1. Leukemia, 28(10): 2040–2048
https://doi.org/10.1038/leu.2014.111
pmid: 24646888
|
| 179 |
Sun X J, Wang Z, Wang L, Jiang Y, Kost N, Soong T D, Chen W Y, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel D J, Nimer S D, Roeder R G (2013). A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature, 500(7460): 93–97
https://doi.org/10.1038/nature12287
pmid: 23812588
|
| 179a |
Sykes D B, Kamps M P (2001). Estrogen-dependent E2a/Pbx1 myeloid cell Lines exhibit conditional differentiation that can be arrested by other leukemic oncoproteins. Blood, 98: 2308–2318
|
| 180 |
Tahirov T H, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104(5): 755–767
https://doi.org/10.1016/S0092-8674(01)00271-9
pmid: 11257229
|
| 181 |
Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, Shibata Y, Yazaki Y, Hirai H (1995). An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J, 14(2): 341–350
pmid: 7530657
|
| 182 |
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008). Acetylation is indispensable for p53 activation. Cell, 133(4): 612–626
https://doi.org/10.1016/j.cell.2008.03.025
pmid: 18485870
|
| 183 |
Tonks A, Pearn L, Musson M, Gilkes A, Mills K I, Burnett A K, Darley R L (2007). Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia, 21(12): 2495–2505
https://doi.org/10.1038/sj.leu.2404961
pmid: 17898786
|
| 184 |
Toyonaga K, Kikuchi H, Yamashita K, Nakayama M, Chijiiwa K, Nakayama T (2009). E2A participates in a fine control of pre-mature B-cell apoptosis mediated by B-cell receptor signaling via transcriptional regulation of survivin, IAP2 and caspase-8 genes. FEBS J, 276(5): 1418–1428
https://doi.org/10.1111/j.1742-4658.2009.06881.x
pmid: 19187225
|
| 185 |
Trombly D J, Whitfield T W, Padmanabhan S, Gordon J A, Lian J B, van Wijnen A J, Zaidi S K, Stein J L, Stein G S (2015). Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 16(1): 309
https://doi.org/10.1186/s12864-015-1445-0
pmid: 25928846
|
| 186 |
Valk P J, Verhaak R G, Beijen M A, Erpelinck C A, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer J M, Beverloo H B, Moorhouse M J, van der Spek P J, Löwenberg B, Delwel R (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, 350(16): 1617–1628
https://doi.org/10.1056/NEJMoa040465
pmid: 15084694
|
| 187 |
Wang J, Hoshino T, Redner R L, Kajigaya S, Liu J M (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA, 95(18): 10860–10865
https://doi.org/10.1073/pnas.95.18.10860
pmid: 9724795
|
| 188 |
Wang L, Gural A, Sun X J, Zhao X, Perna F, Huang G, Hatlen M A, Vu L, Liu F, Xu H, Asai T, Xu H, Deblasio T, Menendez S, Voza F, Jiang Y, Cole P A, Zhang J, Melnick A, Roeder R G, Nimer S D (2011a). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science, 333(6043): 765–769
https://doi.org/10.1126/science.1201662
pmid: 21764752
|
| 189 |
Wang L, Man N, Sun X J, Tan Y, Cao M G, Liu F, Hatlen M, Xu H, Huang G, Mattlin M, Mehta A, Rampersaud E, Benezra R, Nimer S D (2015). Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood, 126(5): 640–650
https://doi.org/10.1182/blood-2015-03-635532
pmid: 26084673
|
| 190 |
Wang X, Truckses D M, Takada S, Matsumura T, Tanese N, Jacobson R H (2007). Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators. Proc Natl Acad Sci USA, 104(19): 7839–7844
https://doi.org/10.1073/pnas.0608570104
pmid: 17483474
|
| 191 |
Wang Y Y, Zhao L J, Wu C F, Liu P, Shi L, Liang Y, Xiong S M, Mi J Q, Chen Z, Ren R, Chen S J (2011b). C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA, 108(6): 2450–2455
https://doi.org/10.1073/pnas.1019625108
pmid: 21262832
|
| 192 |
Warren A J, Bravo J, Williams R L, Rabbitts T H (2000). Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J, 19(12): 3004–3015
https://doi.org/10.1093/emboj/19.12.3004
pmid: 10856244
|
| 193 |
Wei H, Liu X, Xiong X, Wang Y, Rao Q, Wang M, Wang J (2008). AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain. FEBS Lett, 582(15): 2167–2172
https://doi.org/10.1016/j.febslet.2008.05.030
pmid: 18519037
|
| 194 |
Wei Y, Liu S, Lausen J, Woodrell C, Cho S, Biris N, Kobayashi N, Wei Y, Yokoyama S, Werner M H (2007). A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol, 14(7): 653–661
https://doi.org/10.1038/nsmb1258
pmid: 17572682
|
| 195 |
Westendorf J J, Yamamoto C M, Lenny N, Downing J R, Selsted M E, Hiebert S W (1998). The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol, 18(1): 322–333
https://doi.org/10.1128/MCB.18.1.322
pmid: 9418879
|
| 196 |
Wildonger J, Mann R S (2005). The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development, 132(10): 2263–2272
https://doi.org/10.1242/dev.01824
pmid: 15829516
|
| 197 |
Wolford J K, Prochazka M (1998). Structure and expression of the human MTG8/ETO gene. Gene, 212(1): 103–109
https://doi.org/10.1016/S0378-1119(98)00141-3
pmid: 9661669
|
| 198 |
Wood J D, Nucifora F C Jr, Duan K, Zhang C, Wang J, Kim Y, Schilling G, Sacchi N, Liu J M, Ross C A (2000). Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J Cell Biol, 150(5): 939–948
https://doi.org/10.1083/jcb.150.5.939
pmid: 10973986
|
| 199 |
Yamaguchi Y, Kurokawa M, Imai Y, Izutsu K, Asai T, Ichikawa M, Yamamoto G, Nitta E, Yamagata T, Sasaki K, Mitani K, Ogawa S, Chiba S, Hirai H (2004). AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem, 279(15): 15630–15638
https://doi.org/10.1074/jbc.M400355200
pmid: 14752096
|
| 200 |
Yan M, Ahn E Y, Hiebert S W, Zhang D E (2009). RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood, 113(4): 883–886
https://doi.org/10.1182/blood-2008-04-153742
pmid: 19036704
|
| 201 |
Yan M, Burel S A, Peterson L F, Kanbe E, Iwasaki H, Boyapati A, Hines R, Akashi K, Zhang D E (2004). Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA, 101(49): 17186–17191
https://doi.org/10.1073/pnas.0406702101
pmid: 15569932
|
| 202 |
Yan M, Kanbe E, Peterson L F, Boyapati A, Miao Y, Wang Y, Chen I M, Chen Z, Rowley J D, Willman C L, Zhang D E (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med, 12(8): 945–949
https://doi.org/10.1038/nm1443
pmid: 16892037
|
| 203 |
Yan W, Young A Z, Soares V C, Kelley R, Benezra R, Zhuang Y (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol, 17(12): 7317–7327
https://doi.org/10.1128/MCB.17.12.7317
pmid: 9372963
|
| 204 |
Yang G, Khalaf W, van de Locht L, Jansen J H, Gao M, Thompson M A, van der Reijden B A, Gutmann D H, Delwel R, Clapp D W, Hiebert S W (2005). Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol, 25(14): 5869–5879
https://doi.org/10.1128/MCB.25.14.5869-5879.2005
pmid: 15988004
|
| 205 |
Yergeau D A, Hetherington C J, Wang Q, Zhang P, Sharpe A H, Binder M, Marín-Padilla M, Tenen D G, Speck N A, Zhang D E (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet, 15(3): 303–306
https://doi.org/10.1038/ng0397-303
pmid: 9054947
|
| 206 |
Yohe S (2015). Molecular genetic markers in acute myeloid leukemia. J Clin Med, 4(3): 460–478
https://doi.org/10.3390/jcm4030460
pmid: 26239249
|
| 207 |
Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington C J, Burel S A, Lagasse E, Weissman I L, Akashi K, Zhang D E (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA, 98(18): 10398–10403
https://doi.org/10.1073/pnas.171321298
pmid: 11526243
|
| 208 |
Zamir I, Zhang J, Lazar M A (1997). Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev, 11(7): 835–846
https://doi.org/10.1101/gad.11.7.835
pmid: 9106656
|
| 209 |
Zhang D E, Hetherington C J, Meyers S, Rhoades K L, Larson C J, Chen H M, Hiebert S W, Tenen D G (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol, 16(3): 1231–1240
https://doi.org/10.1128/MCB.16.3.1231
pmid: 8622667
|
| 210 |
Zhang J, Hug B A, Huang E Y, Chen C W, Gelmetti V, Maccarana M, Minucci S, Pelicci P G, Lazar M A (2001). Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol, 21(1): 156–163
https://doi.org/10.1128/MCB.21.1.156-163.2001
pmid: 11113190
|
| 211 |
Zhang J, Kalkum M, Chait B T, Roeder R G (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell, 9(3): 611–623
https://doi.org/10.1016/S1097-2765(02)00468-9
pmid: 11931768
|
| 212 |
Zhang J, Kalkum M, Yamamura S, Chait B T, Roeder R G (2004). E protein silencing by the leukemogenic AML1-ETO fusion protein. Science, 305(5688): 1286–1289
https://doi.org/10.1126/science.1097937
pmid: 15333839
|
| 213 |
Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997). Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell, 89(3): 357–364
https://doi.org/10.1016/S0092-8674(00)80216-0
pmid: 9150135
|
| 214 |
Zhang Y W, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000). A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA, 97(19): 10549–10554
https://doi.org/10.1073/pnas.180309597
pmid: 10962029
|
| 215 |
Zhao F, Vilardi A, Neely R J, Choi J K (2001). Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol Cell Biol, 21(18): 6346–6357
https://doi.org/10.1128/MCB.21.18.6346-6357.2001
pmid: 11509675
|
| 216 |
Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C, Boehrer S, Gul H, Schneider O, Ottmann O G, Hoelzer D, Henschler R, Ruthardt M (2004). Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood, 103(9): 3535–3543
https://doi.org/10.1182/blood-2003-09-3335
pmid: 14739224
|
| 217 |
Zuber J, Radtke I, Pardee T S, Zhao Z, Rappaport A R, Luo W, McCurrach M E, Yang M M, Dolan M E, Kogan S C, Downing J R, Lowe S W (2009). Mouse models of human AML accurately predict chemotherapy response. Genes Dev, 23(7): 877–889
https://doi.org/10.1101/gad.1771409
pmid: 19339691
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|