|
|
|
Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities |
Christopher M. Olsen1,2( ),Qing-Song Liu1,2( ) |
1. Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA 2. Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA |
|
|
|
|
Abstract BACKGROUND: Long-term exposure to drugs of abuse causes an upregulation of the cAMP-signaling pathway in the nucleus accumbens and other forebrain regions, this common neuroadaptation is thought to underlie aspects of drug tolerance and dependence. Phosphodiesterase 4 (PDE4) is an enzyme that the selective hydrolyzes intracellular cAMP. It is expressed in several brain regions that regulate the reinforcing effects of drugs of abuse. OBJECTIVE: Here, we review the current knowledge about central nervous system (CNS) distribution of PDE4 isoforms and the effects of systemic and brain-region specific inhibition of PDE4 on behavioral models of drug addiction. METHODS: A systematic literature search was performed using the Pubmed. RESULTS: Using behavioral sensitization, conditioned place preference and drug self-administration as behavioral models, a large number of studies have shown that local or systemic administration of PDE4 inhibitors reduce drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in rats or mice. CONCLUSIONS: Preclinical studies suggest that PDE4 could be a therapeutic target for several classes of substance use disorder. We conclude by identifying opportunities for the development of subtype-selective PDE4 inhibitors that may reduce addiction liability and minimize the side effects that limit the clinical potential of non-selective PDE4 inhibitors. Several PDE4 inhibitors have been clinically approved for other diseases. There is a promising possibility to repurpose these PDE4 inhibitors for the treatment of drug addiction as they are safe and well-tolerated in patients.
|
| Keywords
PDE4
PDE4 inhibitors
VTA
nucleus accumbens
drug addiction
|
|
Corresponding Author(s):
Christopher M. Olsen,Qing-Song Liu
|
|
Online First Date: 17 October 2016
Issue Date: 04 November 2016
|
|
| 1 |
Alberini C M (2009). Transcription factors in long-term memory and synaptic plasticity. Physiol Rev, 89(1): 121–145
https://doi.org/10.1152/physrev.00017.2008
pmid: 19126756
|
| 2 |
Allain F, Minogianis E A, Roberts D C, Samaha A N (2015). How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev, 56: 166–179
https://doi.org/10.1016/j.neubiorev.2015.06.012
pmid: 26116543
|
| 3 |
Anderson S M, Pierce R C (2005). Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther, 106(3): 389–403
https://doi.org/10.1016/j.pharmthera.2004.12.004
pmid: 15922019
|
| 4 |
Bardo M T, Bevins R A (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl), 153(1): 31–43
https://doi.org/10.1007/s002130000569
pmid: 11255927
|
| 5 |
Beardsley P M, Hauser K F (2014). Glial modulators as potential treatments of psychostimulant abuse. Adv Pharmacol, 69: 1–69
https://doi.org/10.1016/B978-0-12-420118-7.00001-9
pmid: 24484974
|
| 6 |
Beardsley P M, Shelton K L, Hendrick E, Johnson K W (2010). The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol, 637(1-3): 102–108
https://doi.org/10.1016/j.ejphar.2010.04.010
pmid: 20399770
|
| 7 |
Bell R L, Lopez M F, Cui C, Egli M, Johnson K W, Franklin K M, Becker H C (2015). Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol, 20(1): 38–42
https://doi.org/10.1111/adb.12106
pmid: 24215262
|
| 8 |
Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre-y-Hernández M, Schratzer M (1988). Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol, 3(3): 245–253
https://doi.org/10.1097/00004850-198807000-00006
pmid: 3153712
|
| 9 |
Blednov Y A, Benavidez J M, Black M, Harris R A (2014). Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci, 8: 129
https://doi.org/10.3389/fnins.2014.00129
pmid: 24904269
|
| 10 |
Britt J P, Benaliouad F, McDevitt R A, Stuber G D, Wise R A, Bonci A (2012). Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron, 76(4): 790–803
https://doi.org/10.1016/j.neuron.2012.09.040
pmid: 23177963
|
| 11 |
Carlezon W A Jr, Chartoff E H (2007). Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc, 2(11): 2987–2995
https://doi.org/10.1038/nprot.2007.441
pmid: 18007634
|
| 12 |
Cherry J A, Davis R L (1999). Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol, 407(2): 287–301
https://doi.org/10.1002/(SICI)1096-9861(19990503)407:2<287::AID-CNE9>3.0.CO;2-R
pmid: 10213096
|
| 13 |
Conrad K L, Louderback K M, Milano E J, Winder D G (2013). Assessment of the impact of pattern of cocaine dosing schedule during conditioning and reconditioning on magnitude of cocaine CPP, extinction, and reinstatement. Psychopharmacology (Berl), 227(1): 109–116
https://doi.org/10.1007/s00213-012-2944-1
pmid: 23269522
|
| 14 |
Conti M, Richter W, Mehats C, Livera G, Park J Y, Jin C (2003). Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem, 278(8): 5493–5496
https://doi.org/10.1074/jbc.R200029200
pmid: 12493749
|
| 15 |
Crabbe J C (2014). Rodent models of genetic contributions to motivation to abuse alcohol. Nebr Symp Motiv, 61: 5–29
https://doi.org/10.1007/978-1-4939-0653-6_2
pmid: 25306777
|
| 16 |
Diamant Z, Spina D (2011). PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther, 24(4): 353–360
https://doi.org/10.1016/j.pupt.2010.12.011
pmid: 21255672
|
| 17 |
Fleischhacker W W H, Hinterhuber H, Bauer H, Pflug B, Berner P, Simhandl C, Wolf R, Gerlach W, Jaklitsch H, Sastre-y-Hernández M, Schmeding-Wiegel H, Sperner-Unterweger B, Voet B, Schubert H (1992). A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology, 26(1-2): 59–64
https://doi.org/10.1159/000118897
pmid: 1475038
|
| 18 |
Franklin K M, Hauser S R, Lasek A W, McClintick J, Ding Z M, McBride W J, Bell R L (2015). Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology (Berl), 232(13): 2251–2262
https://doi.org/10.1007/s00213-014-3852-3
pmid: 25585681
|
| 19 |
Gisondi P, Girolomoni G (2016). Apremilast in the therapy of moderate-to-severe chronic plaque psoriasis. Drug Des Devel Ther, 10: 1763–1770
https://doi.org/10.2147/DDDT.S108115
pmid: 27307707
|
| 20 |
González-Cuello A, Sánchez L, Hernández J, Teresa Castells M, Victoria Milanés M, Laorden M L (2007). Phosphodiesterase 4 inhibitors, rolipram and diazepam block the adaptive changes observed during morphine withdrawal in the heart. Eur J Pharmacol, 570(1-3): 1–9
https://doi.org/10.1016/j.ejphar.2007.05.051
pmid: 17601555
|
| 21 |
Graybiel A M (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci, 13(7): 244–254
https://doi.org/10.1016/0166-2236(90)90104-I
pmid: 1695398
|
| 22 |
Graybiel A M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511
https://doi.org/10.1016/S0960-9822(00)00593-5
pmid: 10899013
|
| 23 |
Grimm J W, Fyall A M, Osincup D P (2005). Incubation of sucrose craving: effects of reduced training and sucrose pre-loading. Physiol Behav, 84(1): 73–79
https://doi.org/10.1016/j.physbeh.2004.10.011
pmid: 15642609
|
| 24 |
Grimm J W, Hope B T, Wise R A, Shaham Y (2001). Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature, 412(6843): 141–142
https://doi.org/10.1038/35084134
pmid: 11449260
|
| 25 |
Hagen T J, Mo X, Burgin A B, Fox D 3rd, Zhang Z, Gurney M E (2014). Discovery of triazines as selective PDE4B versus PDE4D inhibitors. Bioorg Med Chem Lett, 24(16): 4031–4034
https://doi.org/10.1016/j.bmcl.2014.06.002
pmid: 24998378
|
| 26 |
Hamdy M M, Mamiya T, Noda Y, Sayed M, Assi A A, Gomaa A, Yamada K, Nabeshima T (2001). A selective phosphodiesterase IV inhibitor, rolipram blocks both withdrawal behavioral manifestations, and c-Fos protein expression in morphine dependent mice. Behav Brain Res, 118(1): 85–93
https://doi.org/10.1016/S0166-4328(00)00315-6
pmid: 11163637
|
| 27 |
Hansen R T 3rd, Zhang H T (2015). Phosphodiesterase-4 modulation as a potential therapeutic for cognitive loss in pathological and non-pathological aging: possibilities and pitfalls. Curr Pharm Des, 21(3): 291–302
pmid: 25159075
|
| 28 |
Hiroi N, Nestler E J (1998). Nuclear memory: gene transcription and behavior. Adv Pharmacol, 42: 1037–1041
https://doi.org/10.1016/S1054-3589(08)60924-2
pmid: 9328075
|
| 29 |
Horn C C, Kimball B A, Wang H, Kaus J, Dienel S, Nagy A, Gathright G R, Yates B J, Andrews P L (2013). Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE, 8(4): e60537
https://doi.org/10.1371/journal.pone.0060537
pmid: 23593236
|
| 30 |
Howlett, A. C. (2005). “Cannabinoid receptor signaling.” Handb Exp Pharmacol(168): 53–79.
|
| 31 |
Hu W, Lu T, Chen A, Huang Y, Hansen R, Chandler L J, Zhang H T (2011). Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology (Berl), 218(2): 331–339
https://doi.org/10.1007/s00213-011-2290-8
pmid: 21509503
|
| 32 |
Ikemoto S, Bonci A (2014). Neurocircuitry of drug reward. Neuropharmacology, 76 Pt B: 329–341
|
| 33 |
Itzhak Y, Anderson K L (2012). Changes in the magnitude of drug-unconditioned stimulus during conditioning modulate cocaine-induced place preference in mice. Addict Biol, 17(4): 706–716
https://doi.org/10.1111/j.1369-1600.2011.00334.x
pmid: 21507159
|
| 34 |
Iyo M, Bi Y, Hashimoto K, Inada T, Fukui S (1996). Prevention of methamphetamine-induced behavioral sensitization in rats by a cyclic AMP phosphodiesterase inhibitor, rolipram. Eur J Pharmacol, 312(2): 163–170
https://doi.org/10.1016/0014-2999(96)00479-7
pmid: 8894591
|
| 35 |
Janes A C, Kantak K M, Cherry J A (2009). The involvement of type IV phosphodiesterases in cocaine-induced sensitization and subsequent pERK expression in the mouse nucleus accumbens. Psychopharmacology (Berl), 206(2): 177–185
https://doi.org/10.1007/s00213-009-1594-4
pmid: 19588125
|
| 36 |
Johansson E M, Reyes-Irisarri E, Mengod G (2012). Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci Lett, 525(1): 1–6
https://doi.org/10.1016/j.neulet.2012.07.050
pmid: 22884617
|
| 37 |
Kauer J A (2004). Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol, 66(1): 447–475
https://doi.org/10.1146/annurev.physiol.66.032102.112534
pmid: 14977410
|
| 38 |
Kimura M, Tokumura M, Itoh T, Inoue O, Abe K (2006). Lack of cyclic AMP-specific phosphodiesterase 4 activation during naloxone-precipitated morphine withdrawal in rats. Neurosci Lett, 404(1-2): 107–111
https://doi.org/10.1016/j.neulet.2006.05.014
pmid: 16753260
|
| 39 |
Kimura S, Ohi Y, Haji A (2015). Blockade of phosphodiesterase 4 reverses morphine-induced ventilatory disturbance without loss of analgesia. Life Sci, 127: 32–38
https://doi.org/10.1016/j.lfs.2015.02.006
pmid: 25744400
|
| 40 |
Knapp C M, Foye M M, Ciraulo D A, Kornetsky C (1999). The type IV phosphodiesterase inhibitors, Ro 20-1724 and rolipram, block the initiation of cocaine self-administration. Pharmacol Biochem Behav, 62(1): 151–158
https://doi.org/10.1016/S0091-3057(98)00154-3
pmid: 9972858
|
| 41 |
Knapp C M, Lee K, Foye M, Ciraulo D A, Kornetsky C (2001). Additive effects of intra-accumbens infusion of the cAMP-specific phosphodiesterase inhibitor, rolipram and cocaine on brain stimulation reward. Life Sci, 69(14): 1673–1682
https://doi.org/10.1016/S0024-3205(01)01249-8
pmid: 11589507
|
| 42 |
Kuroiwa M, Snyder G L, Shuto T, Fukuda A, Yanagawa Y, Benavides D R, Nairn A C, Bibb J A, Greengard P, Nishi A (2012). Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology (Berl), 219(4): 1065–1079
https://doi.org/10.1007/s00213-011-2436-8
pmid: 21833500
|
| 43 |
Lai M, Zhu H, Sun A, Zhuang D, Fu D, Chen W, Zhang H T, Zhou W (2014). The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats. Int J Neuropsychopharmacol, 17(9): 1397–1407
https://doi.org/10.1017/S1461145714000595
pmid: 24832929
|
| 44 |
Lakics V, Karran E H, Boess F G (2010). Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 59(6): 367–374
https://doi.org/10.1016/j.neuropharm.2010.05.004
pmid: 20493887
|
| 45 |
Lamontagne S, Meadows E, Luk P, Normandin D, Muise E, Boulet L, Pon D J, Robichaud A, Robertson G S, Metters K M, Nantel F (2001). Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res, 920(1-2): 84–96
https://doi.org/10.1016/S0006-8993(01)03023-2
pmid: 11716814
|
| 46 |
Liddie S, Anderson K L, Paz A, Itzhak Y (2012). The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol, 26(10): 1375–1382
https://doi.org/10.1177/0269881112447991
pmid: 22596207
|
| 47 |
Lim Y W, Meyer N P, Shah A S, Budde M D, Stemper B D, Olsen C M (2015). Voluntary Alcohol Intake following Blast Exposure in a Rat Model of Mild Traumatic Brain Injury. PLoS ONE, 10(4): e0125130
https://doi.org/10.1371/journal.pone.0125130
pmid: 25910266
|
| 48 |
Liu X, Liu Y, Zhong P, Wilkinson B, Qi J, Olsen C M, Bayer K U, Liu Q S (2014). CaMKII activity in the ventral tegmental area gates cocaine-induced synaptic plasticity in the nucleus accumbens. Neuropsychopharmacology, 39(4): 989–999
https://doi.org/10.1038/npp.2013.299
pmid: 24154664
|
| 49 |
Logrip M L (2015). Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol, 49(8): 795–802
https://doi.org/10.1016/j.alcohol.2015.03.007
pmid: 26095589
|
| 50 |
Logrip M L, Vendruscolo L F, Schlosburg J E, Koob G F, Zorrilla E P (2014). Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats. Neuropsychopharmacology, 39(7): 1722–1731
https://doi.org/10.1038/npp.2014.20
pmid: 24549104
|
| 51 |
Lu L, Grimm J W, Hope B T, Shaham Y (2004). Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology, 47(Suppl 1): 214–226
https://doi.org/10.1016/j.neuropharm.2004.06.027
pmid: 15464139
|
| 52 |
Lugnier C (2006). Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther, 109(3): 366–398
https://doi.org/10.1016/j.pharmthera.2005.07.003
pmid: 16102838
|
| 53 |
MacKenzie S J, Houslay M D (2000). Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J, 347(Pt 2): 571–578
https://doi.org/10.1042/bj3470571
pmid: 10749688
|
| 54 |
Mamiya T, Noda Y, Ren X, Hamdy M, Furukawa S, Kameyama T, Yamada K, Nabeshima T (2001). Involvement of cyclic AMP systems in morphine physical dependence in mice: prevention of development of morphine dependence by rolipram, a phosphodiesterase 4 inhibitor. Br J Pharmacol, 132(5): 1111–1117
https://doi.org/10.1038/sj.bjp.0703912
pmid: 11226142
|
| 55 |
Mantsch J R, Baker D A, Funk D, Lê A D, Shaham Y (2016). Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology, 41(1): 335–356
https://doi.org/10.1038/npp.2015.142
pmid: 25976297
|
| 56 |
McGirr A, Lipina T V, Mun H S, Georgiou J, Al-Amri A H, Ng E, Zhai D, Elliott C, Cameron R T, Mullins J G, Liu F, Baillie G S, Clapcote S J, Roder J C (2016). Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology, 41(4): 1080–1092
https://doi.org/10.1038/npp.2015.240
pmid: 26272049
|
| 57 |
Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios J M, Mengod G (2010). The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat, 40(1): 36–42
https://doi.org/10.1016/j.jchemneu.2010.03.004
pmid: 20347962
|
| 58 |
Mori T, Baba J, Ichimaru Y, Suzuki T (2000). Effects of rolipram, a selective inhibitor of phosphodiesterase 4, on hyperlocomotion induced by several abused drugs in mice. Jpn J Pharmacol, 83(2): 113–118
https://doi.org/10.1254/jjp.83.113
pmid: 10928323
|
| 59 |
Muelbl M J,Nawarawong N N, Clancy P T, Nettesheim C E, Lim Y W,Olsen C M (2016). Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice. Psychopharmacology (Berl),233(14):2799–2811
|
| 60 |
Mulhall A M, Droege C A, Ernst N E, Panos R J, Zafar M A (2015). Phosphodiesterase 4 inhibitors for the treatment of chronic obstructive pulmonary disease: a review of current and developing drugs. Expert Opin Investig Drugs, 24(12): 1597–1611
https://doi.org/10.1517/13543784.2015.1094054
pmid: 26419847
|
| 61 |
Muschamp J W, Carlezon W A Jr (2013). Roles of nucleus accumbens CREB and dynorphin in dysregulation of motivation. Cold Spring Harb Perspect Med, 3(2): a012005
https://doi.org/10.1101/cshperspect.a012005
pmid: 23293139
|
| 62 |
Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, Nagumo H, Kodama T, Takemura M, Ohtsuka Y, Nakamura J, Tsujita R, Kawasaki K, Yokoi H, Kawanishi M (2009). Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett, 19(12): 3174–3176
https://doi.org/10.1016/j.bmcl.2009.04.121
pmid: 19447034
|
| 63 |
Negus S S, Miller L L (2014). Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev, 66(3): 869–917
https://doi.org/10.1124/pr.112.007419
pmid: 24973197
|
| 64 |
Nestler E J (2015). Reflections on: “A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res
pmid: 26740398
|
| 65 |
Nishi A, Kuroiwa M, Miller D B, O’Callaghan J P, Bateup H S, Shuto T, Sotogaku N, Fukuda T, Heintz N, Greengard P, Snyder G L (2008). Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci, 28(42): 10460–10471
https://doi.org/10.1523/JNEUROSCI.2518-08.2008
pmid: 18923023
|
| 66 |
Núñez C, González-Cuello A, Sánchez L, Vargas M L, Milanés M V, Laorden M L (2009). Effects of rolipram and diazepam on the adaptive changes induced by morphine withdrawal in the hypothalamic paraventricular nucleus. Eur J Pharmacol, 620(1-3): 1–8
https://doi.org/10.1016/j.ejphar.2009.08.002
pmid: 19683523
|
| 67 |
O’Donnell J M, Zhang H T (2004). Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci, 25(3): 158–163
https://doi.org/10.1016/j.tips.2004.01.003
pmid: 15019272
|
| 68 |
Olsen C M, Childs D S, Stanwood G D, Winder D G (2010). Operant sensation seeking requires metabotropic glutamate receptor 5 (mGluR5). PLoS ONE, 5(11): e15085
https://doi.org/10.1371/journal.pone.0015085
pmid: 21152045
|
| 69 |
Olsen C M, Winder D G (2006). A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl), 187(1): 13–21
https://doi.org/10.1007/s00213-006-0388-1
pmid: 16767412
|
| 70 |
Page C P, Spina D (2012). Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol, 12(3): 275–286
https://doi.org/10.1016/j.coph.2012.02.016
pmid: 22497841
|
| 71 |
Pan B, Hillard C J, Liu Q S (2008). D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci, 28(52): 14018–14030
https://doi.org/10.1523/JNEUROSCI.4035-08.2008
pmid: 19109485
|
| 72 |
Pan B, Hillard C J, Liu Q S (2008). Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci, 28(6): 1385–1397
https://doi.org/10.1523/JNEUROSCI.4033-07.2008
pmid: 18256258
|
| 73 |
Pan B, Zhong P, Sun D, Liu Q S (2011). Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects. J Neurosci, 31(31): 11244–11255
https://doi.org/10.1523/JNEUROSCI.1040-11.2011
pmid: 21813685
|
| 74 |
Pérez-Cadahía B, Drobic B, Davie J R (2011). Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol, 89(1): 61–73
pmid: 21326363
|
| 75 |
Pérez-Torres S, Miró X, Palacios J M, Cortés R, Puigdoménech P, Mengod G (2000). Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat, 20(3-4): 349–374
https://doi.org/10.1016/S0891-0618(00)00097-1
pmid: 11207431
|
| 76 |
Pierce R C, Kalivas P W (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev, 25(2): 192–216
https://doi.org/10.1016/S0165-0173(97)00021-0
pmid: 9403138
|
| 77 |
Richter W, Menniti F S, Zhang H T, Conti M (2013). PDE4 as a target for cognition enhancement. Expert Opin Ther Targets, 17(9): 1011–1027
https://doi.org/10.1517/14728222.2013.818656
pmid: 23883342
|
| 78 |
Robichaud A, Stamatiou P B, Jin S L, Lachance N, MacDonald D, Laliberté F, Liu S, Huang Z, Conti M, Chan C C (2002). Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest, 110(7): 1045–1052
https://doi.org/10.1172/JCI0215506
pmid: 12370283
|
| 79 |
Robinson T E, Berridge K C (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev, 18(3): 247–291
https://doi.org/10.1016/0165-0173(93)90013-P
pmid: 8401595
|
| 80 |
Robinson T E, Berridge K C (2008). Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci, 363(1507): 3137–3146
https://doi.org/10.1098/rstb.2008.0093
pmid: 18640920
|
| 81 |
Rodd Z A, Bell R L, Sable H J, Murphy J M, McBride W J (2004). Recent advances in animal models of alcohol craving and relapse. Pharmacol Biochem Behav, 79(3): 439–450
https://doi.org/10.1016/j.pbb.2004.08.018
pmid: 15582015
|
| 82 |
Schroeder J A, Ruta J D, Gordon J S, Rodrigues A S, Foote C C (2012). The phosphodiesterase inhibitor isobutylmethylxanthine attenuates behavioral sensitization to cocaine. Behav Pharmacol, 23(3): 310–314
https://doi.org/10.1097/FBP.0b013e3283536d04
pmid: 22495185
|
| 83 |
Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl), 168(1-2): 3–20
https://doi.org/10.1007/s00213-002-1224-x
pmid: 12402102
|
| 84 |
Siuciak J A, McCarthy S A, Chapin D S, Martin A N (2008). Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl), 197(1): 115–126
https://doi.org/10.1007/s00213-007-1014-6
pmid: 18060387
|
| 85 |
Snider S E, Hendrick E S, Beardsley P M (2013). Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol, 701(1-3): 124–130
https://doi.org/10.1016/j.ejphar.2013.01.016
pmid: 23375937
|
| 86 |
Snider S E, Vunck S A, van den Oord E J, Adkins D E, McClay J L, Beardsley P M (2012). The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur J Pharmacol, 679(1-3): 75–80
https://doi.org/10.1016/j.ejphar.2012.01.013
pmid: 22306241
|
| 87 |
Stolerman I P, Childs E, Ford M M, Grant K A (2011). Role of training dose in drug discrimination: a review. Behav Pharmacol, 22(5-6): 415–429
https://doi.org/10.1097/FBP.0b013e328349ab37
pmid: 21808191
|
| 88 |
Sun A, Zhuang D, Zhu H, Lai M, Chen W, Liu H, Zhang F, Zhou W (2015). Decrease of phosphorylated CREB and ERK in nucleus accumbens is associated with the incubation of heroin seeking induced by cues after withdrawal. Neurosci Lett, 591: 166–170
https://doi.org/10.1016/j.neulet.2015.02.048
pmid: 25711798
|
| 89 |
Thompson B E, Sachs B D, Kantak K M, Cherry J A (2004). The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice. Eur J Neurosci, 19(9): 2561–2568
https://doi.org/10.1111/j.0953-816X.2004.03357.x
pmid: 15128409
|
| 90 |
Thomsen M, Caine S B (2005). Chronic intravenous drug self-administration in rats and mice. Curr Protoc Neurosci, 32:9.20:9.20.1–9.20.40
https://doi.org/10.1002/0471142301.ns0920s32
|
| 91 |
Todd T P, Vurbic D, Bouton M E (2014). Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiol Learn Mem, 108: 52–64
https://doi.org/10.1016/j.nlm.2013.08.012
pmid: 23999219
|
| 92 |
Tzschentke T M (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol, 12(3-4): 227–462
https://doi.org/10.1111/j.1369-1600.2007.00070.x
pmid: 17678505
|
| 93 |
Wang Z Z, Zhang Y, Zhang H T, Li Y F (2015). Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases. Curr Pharm Des, 21(3): 303–316
https://doi.org/10.2174/1381612820666140826115559
pmid: 25159069
|
| 94 |
Wen R T, Feng W Y, Liang J H, Zhang H T (2015). Role of phosphodiesterase 4-mediated cyclic AMP signaling in pharmacotherapy for substance dependence. Curr Pharm Des, 21(3): 355–364
https://doi.org/10.2174/1381612820666140826114412
pmid: 25159074
|
| 95 |
Wen R T, Zhang M, Qin W J, Liu Q, Wang W P, Lawrence A J, Zhang H T, Liang J H (2012). The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol Clin Exp Res, 36(12): 2157–2167
https://doi.org/10.1111/j.1530-0277.2012.01845.x
pmid: 22671516
|
| 96 |
Yan Y, Nitta A, Mizuno T, Nakajima A, Yamada K, Nabeshima T (2006). Discriminative-stimulus effects of methamphetamine and morphine in rats are attenuated by cAMP-related compounds. Behav Brain Res, 173(1): 39–46
https://doi.org/10.1016/j.bbr.2006.05.029
pmid: 16857277
|
| 97 |
Young R (2009). Drug Discrimination. In: Buccafusco J J, editor. Source Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis
|
| 98 |
Zhang H T (2009). Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des, 15(14): 1688–1698
https://doi.org/10.2174/138161209788168092
pmid: 19442182
|
| 99 |
Zhang H T, Huang Y, Masood A, Stolinski L R, Li Y, Zhang L, Dlaboga D, Jin S L, Conti M, O’Donnell J M (2008). Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology, 33(7): 1611–1623
https://doi.org/10.1038/sj.npp.1301537
pmid: 17700644
|
| 100 |
Zhong P, Wang W, Yu F, Nazari M, Liu X, Liu Q S (2012). Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology, 37(11): 2377–2387
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|