Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (4) : 280-289    https://doi.org/10.1007/s11515-017-1459-x
RESEARCH ARTICLE
Bioactive compounds from marine Streptomycessp. VITPSA as therapeutics
S. Pooja, T. Aditi, S. Jemimah Naine, C. Subathra Devi()
School of Biosciences and Technology, VIT University, Tamil Nadu, India
 Download: PDF(2458 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Marine actinomycetes are efficient producers of new secondary metabolites that show different biological activities, including antibacterial, antifungal, anticancer, insecticidal, and enzyme inhibition activities.

METHODS: The morphological, physiological, and biochemical properties of the strain Streptomyces sp. VITPSA were confirmed by conventional methods. Antibacterial, anti-oxidant, anti-inflammatory, anti-diabetic, and cytotoxic activities of Streptomyces sp. VITPSA extract were determined. The media were optimized for the production of secondary metabolites. Characterization and identification of secondary metabolites were conducted by high-performance liquid chromatography, gas chromatography-mass spectroscopy, and Fourier transform infrared spectroscopy analysis.

RESULTS: The strain showed significant antibacterial, anti-oxidant, and cytotoxic activities, moderate anti-inflammatory activity, and no satisfactory anti-diabetic activity. The ethyl acetate extract of Streptomyces sp. VITPSA showed maximum antibacterial activity against two gram-positive and gram-negative bacteria at 0.5 mg/mL. The antioxidant potential of the crude extract exhibited strong reducing power activity at 0.5 mg/mL with 95.1% inhibition. The cytotoxic effect was found to be an IC50 of 50 µg/mL on MCF-7 cell lines. Experimental design of optimization by one-factor analysis revealed the most favorable sucrose, yeast extract, pH (7.25), and temperature (28°C) conditions for the effective production of secondary metabolites.

CONCLUSION: This study revealed that Streptomycessp. VITPSA is an excellent source of secondary metabolites with various bioactivities.

Keywords Marine actinomycetes      bioactive compounds      pathogens      oxidants     
Corresponding Author(s): C. Subathra Devi   
Online First Date: 05 September 2017    Issue Date: 13 September 2017
 Cite this article:   
S. Pooja,T. Aditi,S. Jemimah Naine, et al. Bioactive compounds from marine Streptomycessp. VITPSA as therapeutics[J]. Front. Biol., 2017, 12(4): 280-289.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1459-x
https://academic.hep.com.cn/fib/EN/Y2017/V12/I4/280
Fig.1  (A) Streak plate showing pure culture of Streptomyces sp. VITPSA on starch casein agar medium

(B) Microscopy 100X: showing morphology of Streptomyces sp. VITPSA

Fig.2  Phylogenetic tree showing relationship of Streptomyces sp. VITPSA to other species
Fig.3  Antibacterial activity of crude extract compared with positive control
Fig.4  Radical scavenging activity of crude extract
Fig.5  Anti-inflammatory activity of Streptomyces sp. VITPSA crude extract
Fig.6  Anti-diabetic activity of ethyl acetate extract of Streptomyces sp. VITPSA
Fig.7  (a) Graphical representation of cytotoxic test activity; (b) Cytotoxic test results at different concentrations on MCF7 cell lines
Fig.8  TLC plate showing spots
Fig.9  HPLC chromatogram for ethyl acetate extract of Streptomyces sp. VITPSA
Fig.10  GC-MS chromatogram for ethyl acetate extract of Streptomyces sp. VITPSA
Fig.11  IR spectra for ethyl acetate extract of Streptomyces sp. VITPSA extract
Fig.12  UV analysis spectrum of Streptomyces sp. VITPSA extract
Fig.13  
CompoundlogPMWNo. of H bond acceptorNo. of H bond donorDrug likeliness
3-METHYLDEC-3-ENE5.45154.3000++
PYRROLO[1,2-A]PYRAZINE-1,4-DIONE, HEXAHYDRO-3-(2-METHYLPROPYL)0.66210.2841+++
PYRROLO[1,2-A]PYRAZINE-1,4-DIONE, HEXAHYDRO-3-(PHENYLMETHYL)0.81244.2941+++
Tab.1  Table 2Drug likeliness based on Lipinski rule of five
1 Arijit D, Sourav B, Abuelgasim Y, Hassan M, Subbaramiah S (2014). In vitro antimicrobial activity and characterization of mangrove isolates of Streptomycetes effective against bacteria and fungi of nosocomial origin. Braz Arch Biol Technol, 57(3): 349–356
https://doi.org/10.1590/S1516-89132014005000006
2 Cheminformatics MNova ulica, SK-900 26 Slovensky Grob, Slovak Republic. [Online] Available from: 
3 Dash S, Jin C, Lee O O, Xu Y, Qian P Y (2009). Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol, 36(8): 1047–1056
https://doi.org/10.1007/s10295-009-0588-x pmid: 19471982
4 Deepika T L, Kannabiran K (2009). A report on antidermatophytic activity of actinomycetes isolated from Ennore coast of Chennai, Tamil Nadu, India. Int J Integrat Biol., 6(3): 132–136
5 Deepika T L, Kannabiran K (2009). A morphological, biochemical and biological studies of halophilic Streptomyces sp. isolated from saltpan environment. Am J Infect Dis, 5(3): 207–213
https://doi.org/10.3844/ajidsp.2009.207.213
6 Hotam S, Jayprakash C, Anju Y, Shrivastava R, Smriti S, Anil K S, Natrajan G (2013). J Adv Pharm Technol Res, 4(2): 118–123
https://doi.org/10.4103/2231-4040.111528 pmid: 23833752
7 Kekuda P T R, Shobha K S, Onkarappa R (2010). Studies on antioxidant and anthelmintic activity of two Streptomyces species isolated from Western Ghat soil of Agumbe, Karnataka. J Pharm Res, 3: 26–29
8 Lynch D L, Worthy T E, Kresheck G C (1968). Chromatographic separation of the pigment fractions from a Serratia marcescens strain. Appl Microbiol, 16(1): 13–20
pmid: 4865900
9 Man-Chul K, Jeongmin L, Dong-Hwi K, Hong-Joo S, Moon-Soo H (2014). Isolation and identification of antioxidant producing marine- source actinomycetes and optimal medium conditions. Food Sci Biotechnol. 23(5): 1629–1635
10 Melo I S, Santos S N, Rosa L H, Parma M M, Silva L J, Queiroz S C, Pellizari V H (2014). Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles, 18(1): 15–23
https://doi.org/10.1007/s00792-013-0588-7 pmid: 24126742
11 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65(1-2): 55–63
https://doi.org/10.1016/0022-1759(83)90303-4 pmid: 6606682
12 Prakash G, Yoganandam I, Ilango K, Sucharita D (2003). Evaluation of Anti-inflammatory and Membrane Stabilizing Properties of various extracts of Punica granatum L.(Lythraceae). Int J Pharm Tech Res, 2(2): 260–1263
13 Qasim S Z (1999). The Indian Ocean: images and realities. New Delhi: Oxford and IBHp. 57–90
14 Solanki R, Khanna M, Lal R (2008). Bioactive compounds from marine actinomycetes. Indian J Microbiol, 48(4): 410–431
https://doi.org/10.1007/s12088-008-0052-z pmid: 23100742
15 Suthindhiran K, Kannabiran K (2009). Cytotoxic and antimicrobial potential of Actinomycete species Saccharopolyspora salina VITSDK4 isolated from Bay of Bengal coast of India. Am J Infect Dis, 5(2): 90–98
https://doi.org/10.3844/ajidsp.2009.90.98
16 Thirumalairaj J, Shanmugasundaram T, Sivasankari K, Natarajaseenivasan K, Balagurunathan R (2015). Isolation, screening and characterization of Potent marine Streptomyces Sp. Pm105 against antibiotic resistant pathogens. Asian J Pharm Clin Res., 8(2): 439–443
17 Wang Y, Zhang Z S, Ruar T S, Wang Y M, Ali S M (1999). Investigation of actinomycetes diversity in the tropical rain forests of Singapore. J Ind Microbiol Biotechnol, 23(3): 178–187
https://doi.org/10.1038/sj.jim.2900723
18 Weissmann G (2006). Homeopathy: Holmes, Hogwarts, and the Prince of Wales. FASEB J, 20(11): 1755–1758
https://doi.org/10.1096/fj.06-0901ufm pmid: 16940145
19 Williams S T, Goodfellow M, Alderson G, Wellington E M H, Sneath P H A, Sackin M J (1983). Numerical classification of Streptomyces and related genera. J Gen Microbiol, 129(6): 1743–1813
pmid: 6631406
20 Zothanpuia A K P, Chandra P, Leo V V, Mishra V K, Kumar B, Singh B P (2017). Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with Fresh Water Sediment. Front Microbiol, 
[1] Sowmya Rachannanavar NAGARAJ,Jabez William OSBORNE. Bioactive compounds from Caulerpa racemosa as a potent larvicidal and antibacterial agent[J]. Front. Biol., 2014, 9(4): 300-305.
[2] Xin YANG, Fengyang DENG, Katrina M. RAMONELL. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity[J]. Front Biol, 2012, 7(2): 155-166.
[3] Hon-Hing HO. The genus Pythium in Taiwan, China (1) – a synoptic review[J]. Front Biol Chin, 2009, 4(1): 15-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed