Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (1) : 11-18    https://doi.org/10.1007/s11515-018-1484-4
REVIEW
Preclinical and clinical studies on cancer-associated cachexia
D. Brooke Widner1, D. Clark Files2, Kathryn E. Weaver3, Yusuke Shiozawa1()
1. Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
2. Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
3. Department of Social Sciences and Health Policy and Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Cancer cachexia is the wasting condition that is often seen in advanced stage cancer patients. This wasting is largely attributable to a systemic and progressive loss of skeletal muscle mass that greatly hinders performance of normal daily activities, resulting in reduced quality of life. Moreover, it negatively influences the prognosis of cancer patients. A general consensus in the field is that the loss of muscle mass is due both to an increase in protein degradation and a decrease in protein synthesis. Recent studies using preclinical models for studying cachexia have been useful in identifying the contribution of inflammatory cytokines (e.g. tumor necrosis factor-α and Interleukin-6), and myostatin receptors (e.g. the type IIB activin receptor) to cachexia development, and have led to several clinical trials. However, many questions remain about the molecular mechanisms thought to play a role in the development of cachexia.

METHODS: We conducted a literature search using search engines, such as PubMed and Google Scholar to identify publications within the cancer cachexia field.

RESULTS: We summarized our current knowledge of: 1) the driving mechanisms of cancer cachexia, 2) the preclinical models available for studying the condition, and 3) the findings of recent clinical trials.

CONCLUSION: Cancer cachexia is a complex and variable condition that currently has no standard effective therapeutic treatment. Further studies are desperately needed to better understand this condition and develop effective combination treatments for patients.

Keywords cancer cachexia      muscle wasting      bodyweight loss      metabolic changes      increased protein degradation      decreased protein synthesis     
Corresponding Author(s): Yusuke Shiozawa   
Just Accepted Date: 12 February 2018   Online First Date: 15 March 2018    Issue Date: 26 March 2018
 Cite this article:   
D. Brooke Widner,D. Clark Files,Kathryn E. Weaver, et al. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1484-4
https://academic.hep.com.cn/fib/EN/Y2018/V13/I1/11
Precachexia Cachexia Refractory cachexia
Weight loss a <5% >5% >5%
Other symptoms Altered metabolism Inflammation Cancer unresponsive to treatment
Tab.1  Established stages of cancer cachexia.
Cachexia Anorexia
Classification Metabolic disorder Eating disorder
Initially present with Loss of skeletal muscle massPossible loss of fat Loss of adipose tissueNo loss of muscle mass
Nutritional supplementation Does not reverse condition Reverses condition
Tab.2  Differences between cachexia and anorexia.
Fig.1  Grip strength measurement. Mouse is held by its tail as it grips the wire mesh bar attached to the grip strength meter. As the mouse is pulled horizontally away from the mesh and loses its grip, the peak force generate from the mouse’s grip on the mesh is measured.
Fig.2  Force transducer measurement. The mouse is anesthetized and its foot attached to the pedal of the force transducer. An electrode is placed over the tibialis anterior muscle. A second electrode is placed at the base of the tendon. An electrical current stimulates the muscle to contract. As the muscle contracts, the mouse pushes the pedal, and the resulting force is recorded.
Fig.3  A schematic model of molecular pathways contributing to cancer cachexia. (A) In response to the tumor, the host’s immune system releases inflammatory cytokines that can promote cachexia development. Tumor necrosis factor (TNF)-α signaling activates IkB kinase (IKK) and the nuclear transcription factor-kB (NFkB) pathway to upregulate transcription of the E3 ligase, muscle RING-finger protein-1 (MuRF1), increasing ubiquitin mediated degradation of muscle proteins, and leading to muscle loss. Interleukin 6 (IL-6) activates the janus kinase (JAK)/signal transducer and activator of transcription (STAT)-3 pathway and mitogen-activated protein kinases (MAPK) cascades, upregulating caspase activity, and resulting in increased cellular apoptosis in the muscle. (B) Angiotensin II (AngII) can inhibit protein synthesis by inhibiting the Protein Kinase B (AKT) pathway and reducing phosphorylation of mechanistic target of rapamycin (mTOR) and p70.
1 Al-Majid S, Waters H (2008). The biological mechanisms of cancer-related skeletal muscle wasting: the role of progressive resistance exercise. Biol Res Nurs, 10(1): 7–20
https://doi.org/10.1177/1099800408317345 pmid: 18705151
2 Argilés J M, Busquets S, Stemmler B, López-Soriano F J (2014). Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 14(11): 754–762
https://doi.org/10.1038/nrc3829 pmid: 25291291
3 Aulino P, Berardi E, Cardillo V M, Rizzuto E, Perniconi B, Ramina C, Padula F, Spugnini E P, Baldi A, Faiola F, Adamo S, Coletti D (2010). Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer, 10(1): 363
https://doi.org/10.1186/1471-2407-10-363 pmid: 20615237
4 Bayliss T J, Smith J T, Schuster M, Dragnev K H, Rigas J R (2011). A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther, 11(12): 1663–1668
https://doi.org/10.1517/14712598.2011.627850 pmid: 21995322
5 Bennani-Baiti N, Walsh D (2009). What is cancer anorexia-cachexia syndrome? A historical perspective. J R Coll Physicians Edinb, 39(3): 257–262
pmid: 20608345
6 Bilodeau P A, Coyne E S, Wing S S (2016). The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol, 311(3): C392–C403
https://doi.org/10.1152/ajpcell.00125.2016 pmid: 27510905
7 Bing C, Taylor S, Tisdale M J, Williams G (2001). Cachexia in MAC16 adenocarcinoma: suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J Neurochem, 79(5): 1004–1012
https://doi.org/10.1046/j.1471-4159.2001.00639.x pmid: 11739612
8 Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris L G, Zimmers T A (2012). JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab, 303(3): E410–E421
https://doi.org/10.1152/ajpendo.00039.2012 pmid: 22669242
9 Bowen T S, Schuler G, Adams V (2015). Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle, 6(3): 197–207
https://doi.org/10.1002/jcsm.12043 pmid: 26401465
10 Carson J A, Baltgalvis K A (2010). Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev, 38(4): 168–176
https://doi.org/10.1097/JES.0b013e3181f44f11 pmid: 20871233
11 Choi E, Carruthers K, Zhang L, Thomas N, Battaglino R A, Morse L R, Widrick J J (2013). Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Physiol Rep, 1(6): e00144
https://doi.org/10.1002/phy2.144 pmid: 24400146
12 Consul N, Guo X, Coker C, Lopez-Pintado S, Hibshoosh H, Zhao B, Kalinsky K, Acharyya S (2016). Monitoring Metastasis and Cachexia in a Patient with Breast Cancer: A Case Study. Clin Med Insights Oncol, 10: 83–94
https://doi.org/10.4137/CMO.S40479 pmid: 27660506
13 Crawford J, Prado C M, Johnston M A, Gralla R J, Taylor R P, Hancock M L, Dalton J T (2016). Study Design and Rationale for the Phase 3 Clinical Development Program of Enobosarm, a Selective Androgen Receptor Modulator, for the Prevention and Treatment of Muscle Wasting in Cancer Patients (POWER Trials). Curr Oncol Rep, 18(6): 37
https://doi.org/10.1007/s11912-016-0522-0 pmid: 27138015
14 Deboer M D (2009). Animal models of anorexia and cachexia. Expert Opin Drug Discov, 4(11): 1145–1155
https://doi.org/10.1517/17460440903300842 pmid: 20160874
15 Del Ferraro C, Grant M, Koczywas M, Dorr-Uyemura L A (2012). Management of Anorexia-Cachexia in Late Stage Lung Cancer Patients. J Hosp Palliat Nurs, 14(6): 397–402
https://doi.org/10.1097/NJH.0b013e31825f3470 pmid: 24273460
16 Dobs A S, Boccia R V, Croot C C, Gabrail N Y, Dalton J T, Hancock M L, Johnston M A, Steiner M S (2013). Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol, 14(4): 335–345
https://doi.org/10.1016/S1470-2045(13)70055-X pmid: 23499390
17 Eley H L, Russell S T, Tisdale M J (2007). Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J, 407(1): 113–120
https://doi.org/10.1042/BJ20070651 pmid: 17623010
18 Fearon K, Strasser F, Anker S D, Bosaeus I, Bruera E, Fainsinger R L, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos V E (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 12(5): 489–495
https://doi.org/10.1016/S1470-2045(10)70218-7 pmid: 21296615
19 Fukawa T, Yan-Jiang B C, Min-Wen J C, Jun-Hao E T, Huang D, Qian C N, Ong P, Li Z, Chen S, Mak S Y, Lim W J, Kanayama H O, Mohan R E, Wang R R, Lai J H, Chua C, Ong H S, Tan K K, Ho Y S, Tan I B, Teh B T, Shyh-Chang N (2016). Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med, 22(6): 666–671
https://doi.org/10.1038/nm.4093 pmid: 27135739
20 Hickish T, Andre T, Wyrwicz L, Saunders M, Sarosiek T, Kocsis J, Nemecek R, Rogowski W, Lesniewski-Kmak K, Petruzelka L, Apte R N, Mohanty P, Stecher M, Simard J, de Gramont A (2017). MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol, 18(2): 192–201
https://doi.org/10.1016/S1470-2045(17)30006-2 pmid: 28094194
21 Islam-Ali B, Khan S, Price S A, Tisdale M J (2001). Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF). Br J Cancer, 85(5): 758–763
https://doi.org/10.1054/bjoc.2001.1992 pmid: 11531264
22 Jatoi A, Dakhil S R, Nguyen P L, Sloan J A, Kugler J W, Rowland K M Jr, Soori G S, Wender D B, Fitch T R, Novotny P J, Loprinzi C L (2007). A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer, 110(6): 1396–1403
https://doi.org/10.1002/cncr.22944 pmid: 17674351
23 Karayiannakis A J, Syrigos K N, Polychronidis A, Pitiakoudis M, Bounovas A, Simopoulos K (2001). Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res, 21(2B): 1355–1358
pmid: 11396212
24 Li Y P, Reid M B (2000). NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol, 279(4): R1165–R1170
https://doi.org/10.1152/ajpregu.2000.279.4.R1165 pmid: 11003979
25 Lok C (2015). Cachexia: The last illness. Nature, 528(7581): 182–183
https://doi.org/10.1038/528182a pmid: 26659165
26 Maltoni M, Fabbri L, Nanni O, Scarpi E, Pezzi L, Flamini E, Riccobon A, Derni S, Pallotti G, Amadori D (1997). Serum levels of tumour necrosis factor alpha and other cytokines do not correlate with weight loss and anorexia in cancer patients. Support Care Cancer, 5(2): 130–135
https://doi.org/10.1007/BF01262570 pmid: 9069613
27 McLean J B, Moylan J S, Andrade F H (2014). Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol, 5: 503
https://doi.org/10.3389/fphys.2014.00503 pmid: 25566096
28 Monitto C L, Dong S M, Jen J, Sidransky D (2004). Characterization of a human homologue of proteolysis-inducing factor and its role in cancer cachexia. Clin Cancer Res, 10(17): 5862–5869
https://doi.org/10.1158/1078-0432.CCR-04-0435 pmid: 15355918
29 Mueller T C, Bachmann J, Prokopchuk O, Friess H, Martignoni M E (2016). Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans? BMC Cancer, 16(1): 75
https://doi.org/10.1186/s12885-016-2121-8 pmid: 26856534
30 Na Y J, Baek H S, Ahn S M, Shin H J, Chang I S, Hwang J S (2007). [4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03) inhibits SCF/c-kit signaling in 501mel human melanoma cells and abolishes melanin production in mice and brownish guinea pigs. Biochem Pharmacol, 74(5): 780–786
https://doi.org/10.1016/j.bcp.2007.05.028 pmid: 17658483
31 Narsale A A, Carson J A (2014). Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care, 8(4): 321–327
https://doi.org/10.1097/SPC.0000000000000091 pmid: 25319274
32 National Cancer Institute (2011). Tackling the Conundrum of Cachexia in Cancer. Accessed in 2018, from .
33 Onesti J K, Guttridge D C (2014). Inflammation based regulation of cancer cachexia. BioMed Res Int, 2014: 168407
https://doi.org/10.1155/2014/168407 pmid: 24877061
34 Pagan J, Seto T, Pagano M, Cittadini A (2013). Role of the ubiquitin proteasome system in the heart. Circ Res, 112(7): 1046–1058
https://doi.org/10.1161/CIRCRESAHA.112.300521 pmid: 23538275
35 Pasut A, Jones A E, Rudnicki M A (2013). Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp, (73): e50074
pmid: 23542587
36 Patel H J, Patel B M (2017). TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci, 170: 56–63
https://doi.org/10.1016/j.lfs.2016.11.033 pmid: 27919820
37 Penafuerte C A, Gagnon B, Sirois J, Murphy J, MacDonald N, Tremblay M L (2016). Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br J Cancer, 114(6): 680–687
https://doi.org/10.1038/bjc.2016.3 pmid: 26954714
38 Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner E F (2014). A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab, 20(3): 433–447
https://doi.org/10.1016/j.cmet.2014.06.011 pmid: 25043816
39 Petruzzelli M, Wagner E F (2016). Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev, 30(5): 489–501
https://doi.org/10.1101/gad.276733.115 pmid: 26944676
40 Porporato P E (2016). Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 5(2): e200
https://doi.org/10.1038/oncsis.2016.3 pmid: 26900952
41 Puppa M, Narsale A, Rose-John S, Carson J (2014). Trans IL-6 signaling and suppressed muscle protein synthesis with cancer. FASEB J, 28(1)
42 Russell S T, Sanders P M, Tisdale M J (2006). Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett, 231(2): 290–294
https://doi.org/10.1016/j.canlet.2005.02.007 pmid: 16399230
43 Sakuma K, Yamaguchi A (2012). Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle, 3(2): 77–94
https://doi.org/10.1007/s13539-011-0052-4 pmid: 22476916
44 Sandri M (2013). Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol, 45(10): 2121–2129
https://doi.org/10.1016/j.biocel.2013.04.023 pmid: 23665154
45 Shiono M, Huang K, Downey R J, Consul N, Villanueva N, Beck K, Fenn K, Dietz D, Yamaguchi T, Kato S, Divgi C, Kalinsky K, Wei Y, Zhang Y, Borczuk A C, Inoue A, Halmos B, Acharyya S (2016). An analysis of the relationship between metastases and cachexia in lung cancer patients. Cancer Med, 5(9): 2641–2648
https://doi.org/10.1002/cam4.841 pmid: 27485414
46 Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A (2013). Cancer cachexia--pathophysiology and management. J Gastroenterol, 48(5): 574–594
https://doi.org/10.1007/s00535-013-0787-0 pmid: 23512346
47 Temel J S, Abernethy A P, Currow D C, Friend J, Duus E M, Yan Y, Fearon K C (2016). Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol, 17(4): 519–531
https://doi.org/10.1016/S1470-2045(15)00558-6 pmid: 26906526
48 Waning D L, Mohammad K S, Reiken S, Xie W, Andersson D C, John S, Chiechi A, Wright L E, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi M S, Witzmann F A, Zhen G, Wang X, Cao X, Roodman G D, Marks A R, Guise T A (2015). Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med, 21(11): 1262–1271
https://doi.org/10.1038/nm.3961 pmid: 26457758
49 Wieland B M, Stewart G D, Skipworth R J, Sangster K, Fearon K C, Ross J A, Reiman T J, Easaw J, Mourtzakis M, Kumar V, Pak B J, Calder K, Filippatos G, Kremastinos D T, Palcic M, Baracos V E (2007). Is there a human homologue to the murine proteolysis-inducing factor? Clin Cancer Res, 13(17): 4984–4992
https://doi.org/10.1158/1078-0432.CCR-07-0946 pmid: 17785548
50 Winbanks C E, Murphy K T, Bernardo B C, Qian H, Liu Y, Sepulveda P V, Beyer C, Hagg A, Thomson R E, Chen J L, Walton K L, Loveland K L, McMullen J R, Rodgers B D, Harrison C A, Lynch G S, Gregorevic P (2016). Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med, 8(348): 348ra98
https://doi.org/10.1126/scitranslmed.aac4976 pmid: 27440729
51 Wu C, Fernandez S A, Criswell T, Chidiac T A, Guttridge D, Villalona-Calero M, Bekaii-Saab T S (2013). Disrupting cytokine signaling in pancreatic cancer: a phase I/II study of etanercept in combination with gemcitabine in patients with advanced disease. Pancreas, 42(5): 813–818
https://doi.org/10.1097/MPA.0b013e318279b87f pmid: 23429495
52 Yoshida T, Galvez S, Tiwari S, Rezk B M, Semprun-Prieto L, Higashi Y, Sukhanov S, Yablonka-Reuveni Z, Delafontaine P (2013). Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem, 288(33): 23823–23832
https://doi.org/10.1074/jbc.M112.449074 pmid: 23831688
53 Zhou X, Wang J L, Lu J, Song Y, Kwak K S, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet W S, Lacey D L, Goldberg A L, Han H Q (2010). Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell, 142(4): 531–543
https://doi.org/10.1016/j.cell.2010.07.011 pmid: 20723755
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed