|
|
|
Origin of tendon stem cells in situ |
Tyler Harvey1,2, Chen-Ming Fan1,2( ) |
1. Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA 2. Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA |
|
|
|
|
Abstract BACKGROUND: Adult stem cells are surveillance repositories capable of supplying a renewable source of progenitors for tissue repair and regeneration to maintain tissue homeostasis throughout life. Many tissue-resident stem cells have been identified in situ, which lays the foundation for studying them in their native microenvironment, i.e. the niche. Within the musculoskeletal system, muscle stem cells have been unequivocally identified in the mouse, which have led to considerable advances in understanding their role in muscle homeostasis and regeneration. On the other hand, for bone and tendon progenitor cells, mesenchymal stem cells have been used as the main in vitro cell model as they can differentiate into osteogenic, chondrogenic and tenogenic fates. Despite considerable efforts and employment of modern tools, the in vivo origins of bone and tendon stem cells remain debated. Tendon regeneration via stem cells is understudied and deserves attention as tendon damage is noted for a bleak, time-consuming recovery and the repaired tendon seldom regains the structural integrity and strength of the native, uninjured state. OBJECTIVE: Here we review the past efforts and recent studies toward defining adult tendon stem cells and understanding tendon regeneration instead of tendon development. The focus is on adult tendon resident cells in situ and the uncertainty of their roles in regeneration. METHODS: A systematic literature search using the Pubmed search engine was conducted encompassing the seminal papers in the tendon field. CONCLUSIONS: Investigation of tendon stem cells in situ is in its infancy mainly due to lack of necessary tools and standardized injury model. We propose a concerted effort toward establishing a comprehensive cell atlas of the tendon, making genetic tools and choosing a reliable injury model for coordinated studies among different laboratories. Increasing our basic understanding should aid future therapeutic innovations to shorten and enhance the tendon repair/regeneration process.
|
| Keywords
Tendon
stem cells
midsubstance
sheath
injury
|
|
Corresponding Author(s):
Chen-Ming Fan
|
|
Online First Date: 12 July 2018
Issue Date: 10 September 2018
|
|
| 1 |
Agarwal S, Loder S J, Cholok D, Peterson J, Li J, Breuler C, Cameron Brownley R, Hsin Sung H, Chung M T, Kamiya N, Li S, Zhao B, Kaartinen V, Davis T A, Qureshi A T, Schipani E, Mishina Y, Levi B (2017). Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells, 35(3): 705–710
https://doi.org/10.1002/stem.2515
pmid: 27862618
|
| 2 |
Anderson D M, Arredondo J, Hahn K, Valente G, Martin J F, Wilson-Rawls J, Rawls A (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn, 235(3): 792–801
https://doi.org/10.1002/dvdy.20671
pmid: 16408284
|
| 3 |
Arble J R, Lalley A L, Dyment N A, Joshi P, Shin D G, Gooch C, Grawe B, Rowe D, Shearn J T (2016). The LG/J murine strain exhibits near-normal tendon biomechanical properties following a full-length central patellar tendon defect. Connect Tissue Res, 57(6): 496–506
https://doi.org/10.1080/03008207.2016.1213247
pmid: 27552106
|
| 4 |
Ateschrang A, Ahmad S S, Stöckle U, Schroeter S, Schenk S, Ahrend M D (2017). Recovery of ACL function after dynamic intraligamentary stabilization is resultant to restoration of ACL integrity and scar tissue formation. Knee Surg Sports Tramatol Arthrosc
https://doi.org/10.1007/s00167-017-4656-x
|
| 5 |
Bagchi R A and Czubryt M P (2012). Synergistic roles of scleraxis and Smads in the regulation of collagen 1a2 gene expression. Biochim Biophys Acta, 1823(10): 1936–1944
https://doi.org/10.1016/j.bbamcr.2012.07.002
pmid: 22796342
|
| 6 |
Bajpai V K, Mistriotis P, Andreadis S T (2012). Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res (Amst), 8(1): 74–84
https://doi.org/10.1016/j.scr.2011.07.003
pmid: 22099022
|
| 7 |
Baksh N, Hannon C P, Murawski C D, Smyth N A, Kennedy J G (2013). Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy, 29(3): 596–607
https://doi.org/10.1016/j.arthro.2012.10.025
pmid: 23352397
|
| 8 |
Bao Z Z, Lakonishok M, Kaufman S, Horwitz A F (1993). Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci, 106(Pt 2): 579–589
pmid: 8282763
|
| 9 |
Barker N, van Es J H, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters P J, Clevers H (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007
https://doi.org/10.1038/nature06196
pmid: 17934449
|
| 10 |
Beason D P, Kuntz A F, Hsu J E, Miller K S, Soslowsky L J (2012). Development and evaluation of multiple tendon injury models in the mouse. J Biomech, 45(8): 1550–1553
https://doi.org/10.1016/j.jbiomech.2012.02.022
pmid: 22405494
|
| 11 |
Benjamin M and Ralphs J R (1998). Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat, 193(4): 481–494
https://doi.org/10.1046/j.1469-7580.1998.19340481.x
pmid: 10029181
|
| 12 |
Berthet E, Chen C, Butcher K, Schneider R A, Alliston T, Amirtharajah M (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res, 31(9): 1475–1483
https://doi.org/10.1002/jor.22382
pmid: 23653374
|
| 13 |
Bi Y, Ehirchiou D, Kilts T M, Inkson C A, Embree M C, Sonoyama W, Li L, Leet A I, Seo B M, Zhang L, Shi S, Young M F (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 13(10): 1219–1227
https://doi.org/10.1038/nm1630
pmid: 17828274
|
| 14 |
Brent A E, Schweitzer R, Tabin C J (2003). A somitic compartment of tendon progenitors. Cell, 113(2): 235–248
https://doi.org/10.1016/S0092-8674(03)00268-X
pmid: 12705871
|
| 15 |
Brent A E, Tabin C J (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131(16): 3885–3896
https://doi.org/10.1242/dev.01275
pmid: 15253939
|
| 16 |
Buschmann J, Bürgisser G M ( 2017). Biomechanics on tendons and ligaments. Zurich: Elsevier, Print
|
| 17 |
Cairns J (1975). Mutation selection and the natural history of cancer. Nature, 255(5505): 197–200
https://doi.org/10.1038/255197a0
pmid: 1143315
|
| 18 |
Calve S, Dennis R G, Kosnik P E 2nd, Baar K, Grosh K, Arruda E M (2004). Engineering of functional tendon. Tissue Eng, 10(5-6): 755–761
https://doi.org/10.1089/1076327041348464
pmid: 15265292
|
| 19 |
Chan B P, Fu S, Qin L, Lee K, Rolf C G, Chan K (2000). Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand, 71(5): 513–518
https://doi.org/10.1080/000164700317381234
pmid: 11186411
|
| 20 |
Chang J, Thunder R, Most D, Longaker M T, Lineaweaver W C (2000). Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg, 105(1): 148–155
https://doi.org/10.1097/00006534-200001000-00025
pmid: 10626983
|
| 21 |
Charvet B, Ruggiero F, Le Guellec D (2012). The development of the myotendinous junction. A review. Muscles Ligaments Tendons J, 2(2): 53–63
pmid: 23738275
|
| 22 |
Chien C, Pryce B, Tufa S F, Keene D R, Huang A H (2017). Optimizing a 3D model system for molecular manipulation of tenogenesis. Connect Tissue Res, 22: 1–14
https://doi.org/10.1080/03008207.2017.1383403
pmid: 28937836
|
| 23 |
Covas D T, Panepucci R A, Fontes A M, Silva W A Jr, Orellana M D, Freitas M C, Neder L, Santos A R, Peres L C, Jamur M C, Zago M A (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol, 36(5): 642–654
https://doi.org/10.1016/j.exphem.2007.12.015
pmid: 18295964
|
| 24 |
Cserjesi P, Brown D, Ligon K L, Lyons G E, Copeland N G, Gilbert D J, Jenkins N A, Olson E N (1995). Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development, 121(4): 1099–1110
pmid: 7743923
|
| 25 |
Dahlgren L A, van der Meulen M C, Bertram J E, Starrak G S, Nixon A J (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res, 20(5): 910–919
https://doi.org/10.1016/S0736-0266(02)00009-8
pmid: 12382953
|
| 26 |
Dorrell C, Erker L, Schug J, Kopp J L, Canaday P S, Fox A J, Smirnova O, Duncan A W, Finegold M J, Sander M, Kaestner K H, Grompe M (2011). Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev, 25(11): 1193–1203
https://doi.org/10.1101/gad.2029411
pmid: 21632826
|
| 27 |
Dyment N A, Breidenbach A P, Schwartz A G, Russell R P, Aschbacher-Smith L, Liu H, Hagiwara Y, Jiang R, Thomopoulos S, Butler D L, Rowe D W (2015). Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol, 405(1): 96–107
https://doi.org/10.1016/j.ydbio.2015.06.020
pmid: 26141957
|
| 28 |
Dyment N A, Hagiwara Y, Matthews B G, Li Y, Kalajzic I, Rowe D W (2014). Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One, 9(4): e96113
https://doi.org/10.1371/journal.pone.0096113
pmid: 24759953
|
| 29 |
Edom-Vovard F, Duprez D (2004). Signals regulating tendon formation during chick embryonic development. Dev Dyn, 229(3): 449–457
https://doi.org/10.1002/dvdy.10481
pmid: 14991700
|
| 30 |
Elliott D H (1965). Structure and Function of Mammalian Tendon. Biol Rev Camb Philos Soc, 40(3): 392–421
https://doi.org/10.1111/j.1469-185X.1965.tb00808.x
pmid: 14340913
|
| 31 |
Feil R, Wagner J, Metzger D, Chambon P (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun, 237(3): 752–757
https://doi.org/10.1006/bbrc.1997.7124
pmid: 9299439
|
| 32 |
Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. PNAS 93: 10887–10890
pmid: PMCID: PMC38252
|
| 33 |
Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V (2007). Collagen structure of tendon relates to function. Sci World J, 7: 404–420
https://doi.org/10.1100/tsw.2007.92
pmid: 17450305
|
| 34 |
Frolova E G, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens G J, Plow E F, Stenina-Adognravi O (2014). Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol, 37: 35–48
https://doi.org/10.1016/j.matbio.2014.02.003
pmid: 24589453
|
| 35 |
Fukui N, Katsuragawa Y, Sakai H, Oda H, Nakamura K (1998). Effect of local application of basic fibroblast growth factor on ligament healing in rabbits. Rev Rhum Engl Ed, 65(6): 406–414
pmid: 9670333
|
| 36 |
Gaut L, Duprez D (2016). Tendon development and diseases. Dev Biol, 5(1): 5–23
https://doi.org/10.1002/wdev.201
pmid: 26256998
|
| 37 |
Gaut L, Robert N, Delalande A, Bonnin M A, Pichon C, Duprez D (2016). EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS One, 11(11): e0166237
https://doi.org/10.1371/journal.pone.0166237
pmid: 27820865
|
| 38 |
Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina M E, Ordóñez-Morán P, Clevers H, Lutolf M P (2016). Designer matrices for intestinal stem cell and organoid culture. Nature, 539(7630): 560–564
https://doi.org/10.1038/nature20168
pmid: 27851739
|
| 39 |
Grcevic D, Pejda S, Matthews B G, Repic D, Wang L, Li H, Kronenberg M S, Jiang X, Maye P, Adams D J, Rowe D W, Aguila H L, Kalajzic I (2012). In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells, 30(2): 187–196
https://doi.org/10.1002/stem.780
pmid: 22083974
|
| 40 |
Guerquin M J, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin M A, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler K E, Baumberger T, Doursounian L, Berenbaum F, Duprez D (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest, 123(8): 3564–3576
https://doi.org/10.1172/JCI67521
pmid: 23863709
|
| 41 |
Gumucio J P, Phan A C, Ruehlmann D G, Noah A C, Mendias C L (2014). Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol (1985), 117(11): 1287–1291
https://doi.org/10.1152/japplphysiol.00720.2014
pmid: 25277742
|
| 42 |
Hall T E, Bryson-Richardson R J, Berger S, Jacoby A S, Cole N J, Hollway G E, Berger J, Currie P D (2007). The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin 2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA, 104(17): 7092–7
https://doi.org/10.1073/pnas.0700942104
pmid: 17438294
|
| 43 |
Hexter A T, Pendegrass C, Haddad F, Blunn G (2017). Demineralized Bone Matrix to Augment Tendon-Bone Healing: A Systematic Review. Orthop J Sports Med, 5(10): 2325967117734517
https://doi.org/10.1177/2325967117734517
pmid: 29124078
|
| 44 |
Hildebrand K A, Woo S L, Smith D W, Allen C R, Deie M, Taylor B J, Schmidt C C (1998). The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med, 26(4): 549–554
https://doi.org/10.1177/03635465980260041401
pmid: 9689377
|
| 45 |
Hoffman P N, Cleveland D W (1988). Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific b-tubulin isotype. Proc Natl Acad Sci USA, 85(12): 4530–4533
https://doi.org/10.1073/pnas.85.12.4530
pmid: 3132717
|
| 46 |
Howell K, Chien C, Bell R, Laudier D, Tufa S F, Keene D R, Andarawis-Puri N, Huang A H (2017) Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep, 7: 45238
https://doi.org/10.1038/srep45238
|
| 47 |
Huang A H, Lu H H, Schweitzer R (2015). Molecular regulation of tendon cell fate during development. J Orthop Res, 33(6): 800–812
https://doi.org/10.1002/jor.22834
pmid: 25664867
|
| 48 |
Ibraghimov-Beskrovnaya O, Ervasti J M, Leveille C J, Slaughter C A, Sernett S W, Campbell K P (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355(6362): 696–702
https://doi.org/10.1038/355696a0
pmid: 1741056
|
| 49 |
Imokawa Y, Yoshizato K (1997). Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci USA, 94(17): 9159–9164
https://doi.org/10.1073/pnas.94.17.9159
pmid: 9256452
|
| 50 |
Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S, Asahara H (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA, 107(23): 10538–10542
https://doi.org/10.1073/pnas.1000525107
pmid: 20498044
|
| 51 |
Ivkovic S, Yoon B S, Popoff S N, Safadi F F, Libuda D E, Stephenson R C, Daluiski A, Lyons K M (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development, 130(12): 2779–2791
https://doi.org/10.1242/dev.00505
pmid: 12736220
|
| 52 |
Kajikawa Y, Morihara T, Sakamoto H, Matsuda K, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008). Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol, 215(3): 837–845
https://doi.org/10.1002/jcp.21368
pmid: 18181148
|
| 53 |
Kaux J F, Janssen L, Drion P, Nusgens B, Libertiaux V, Pascon F, Heyeres A, Hoffmann A, Lambert C, Le Goff C, Denoël V, Defraigne J O, Rickert M, Crielaard J M, Colige A (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscles Ligaments Tendons J, 4(1): 24–28
pmid: 24932443
|
| 54 |
Kirkendall D T and Garrett W E (1997). Function and biomechanics of tendons. Scand J Med Sci Sports, 7(2): 62–66
https://doi.org/10.1111/j.1600-0838.1997.tb00120.x
pmid: 9211605
|
| 55 |
Kretzschmar K and Watt F M (2012). Lineage tracing. Cell, 148(1-2): 33–45
https://doi.org/10.1016/j.cell.2012.01.002
pmid: 22265400
|
| 56 |
Kurth T B, Dell’Accio F, Crouch V, Augello A, Sharpe P T, De Bari C (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum, 63(5): 1289–1300
https://doi.org/10.1002/art.30234
|
| 57 |
Kurtz C A, Loebig T G, Anderson D D, DeMeo P J, Campbell P G (1999). Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med, 27(3): 363–369
https://doi.org/10.1177/03635465990270031701
pmid: 10352775
|
| 58 |
Lalley A L, Dyment N A, Kazemi N, Kenter K, Gooch C, Rowe D W, Butler D L, Shearn J T (2015). Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res, 33(11): 1693–1703
https://doi.org/10.1002/jor.22928
pmid: 25982892
|
| 59 |
Lee C H, Lee F Y, Tarafder S, Kao K, Jun Y, Yang G, Mao J J (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest, 125(7): 2690–2701
https://doi.org/10.1172/JCI81589
pmid: 26053662
|
| 60 |
Léjard V, Blais F, Guerquin M J, Bonnet A, Bonnin M A, Havis E, Malbouyres M, Bidaud C B, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D (2011). EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem, 286(7): 5855–5867
https://doi.org/10.1074/jbc.M110.153106
pmid: 21173153
|
| 61 |
Léjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl M H, Noda M, Duprez D, Houillier P, Rossert J (2007). Scleraxis and NFATc regulate the expression of the pro-a1(I) collagen gene in tendon fibroblasts. J Biol Chem, 282(24): 17665–17675
https://doi.org/10.1074/jbc.M610113200
pmid: 17430895
|
| 62 |
Leong D J, Sun H B (2016). Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci, 1383(1): 88–96
https://doi.org/10.1111/nyas.13262
pmid: 27706825
|
| 63 |
Letson A K, Dahners L E (1994). The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res, (308): 207–212
pmid: 7955685
|
| 64 |
Levay A K, Peacock J D, Lu Y, Koch M, Hinton R B Jr, Kadler K E, Lincoln J (2008). Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res, 103(9): 948–956
https://doi.org/10.1161/CIRCRESAHA.108.177238
pmid: 18802027
|
| 65 |
Li L and Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545
https://doi.org/10.1126/science.1180794
pmid: 20110496
|
| 66 |
Lin T W, Cardenas L, Glaser D L, Soslowsky L J (2006). Tendon healing in interleukin-4 and interleukin-6 knockout mice. J Biomech, 39(1): 61–69
https://doi.org/10.1016/j.jbiomech.2004.11.009
pmid: 16271588
|
| 67 |
Liu C F, Aschbacher-Smith L, Barthelery N J, Dyment N, Butler D, and Wylie C (2012). Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A, 18(5-6): 598–608
https://doi.org/10.1089/ten.tea.2011.0338
pmid: 21939397
|
| 68 |
Liu H, Xu J, Liu C F, Lan Y, Wylie C, Jiang R (2015). Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res, 33(6): 840–848
https://doi.org/10.1002/jor.22886
pmid: 25729011
|
| 69 |
Liu R, Zhang Z, Xu Y (2010). Downregulation of nucleostemin causes G1 cell cycle arrest via a p53-independent pathway in prostate cancer PC-3 cells. Urol Int, 85(2): 221–227
https://doi.org/10.1159/000315968
pmid: 20664182
|
| 70 |
Liu Z, Martin L J (2003). Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol, 459(4): 368–391
https://doi.org/10.1002/cne.10664
pmid: 12687705
|
| 71 |
Lu H H, Thomopoulos S (2013). Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng, 15(1): 201–226
https://doi.org/10.1146/annurev-bioeng-071910-124656
pmid: 23642244
|
| 72 |
Lui P, Zhang P, Chan K, Qin L (2010). Biology and augmentation of tendon-bone insertion repair. J Orthop Surg, 5(1): 59
https://doi.org/10.1186/1749-799X-5-59
pmid: 20727196
|
| 73 |
Lyras D N, Kazakos K, Verettas D, Botaitis S, Agrogiannis G, Kokka A, Pitiakoudis M, Kotzakaris A (2009). The effect of platelet-rich plasma gel in the early phase of patellar tendon healing. Arch Orthop Trauma Surg, 129(11): 1577–1582
https://doi.org/10.1007/s00402-009-0935-4
pmid: 19621231
|
| 74 |
Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera A L, Keene D R, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilic D, Baskaran H, Sakai T (2011). Conversion of mechanical force into TGF-b-mediated biochemical signals. Curr Biol, 21(11): 933–941
https://doi.org/10.1016/j.cub.2011.04.007
pmid: 21600772
|
| 75 |
Mendias C L, Gumucio J P, Bakhurin K I, Lynch E B, Brooks S V (2012). Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res, 30(4): 606–612
https://doi.org/10.1002/jor.21550
pmid: 21913219
|
| 76 |
Miosge N, Klenczar C, Herken R, Willem M, Mayer U (1999). Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. Lab Invest, 79(12): 1591–1599
pmid: 10616209
|
| 77 |
Molloy T, Wang Y, Murrell G (2003). The roles of growth factors in tendon and ligament healing. Sports Med, 33(5): 381–394
https://doi.org/10.2165/00007256-200333050-00004
pmid: 12696985
|
| 78 |
Murchison N D, Price B A, Conner D A, Keene D R, Olson E N, Tabin C J, Schweitzer R (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134: 2697–2708
https://doi.org/10.1242/dev.001933 PMID:
|
| 79 |
Paxton J Z, Donnelly K, Keatch R P, Baar K (2009). Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A, 15(6): 1201–1209
https://doi.org/10.1089/ten.tea.2008.0105
pmid: 18991487
|
| 80 |
Paxton J Z, Grover L M, Baar K (2010). Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A, 16(11): 3515–3525
https://doi.org/10.1089/ten.tea.2010.0039
pmid: 20593972
|
| 81 |
Perez A V, Perrine M, Brainard N, Vogel K G (2003). Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice. Mech Dev, 120(10): 1153–1163
https://doi.org/10.1016/j.mod.2003.08.003
pmid: 14568104
|
| 82 |
Petersen J R, Agarwal S, Brownley R C, Loder S J, Ranganathan K, Cederna P S, Mishina Y, Wang S C, Levi B (2015). Direct mouse trauma/burn model for heterotopic ossification. J Vis Exp (102): 52880
https://doi.org/10.3791/52880
pmid: 26274052
|
| 83 |
Petersen W, Fink C, Kopf S (2017). Return to sports after ACL reconstruction: a paradigm shift from time to function. Knee Surg Sports Traumatol Arthrosc, 25(5): 1353–1355
https://doi.org/10.1007/s00167-017-4559-x
pmid: 28508229
|
| 84 |
Potten C S, Hendry J H (1975). Differential regeneration of intestinal proliferative cells and cryptogenic cells after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med, 27(5): 413–424
https://doi.org/10.1080/09553007514550411
pmid: 1080137
|
| 85 |
Pryce B A, Brent A E, Murchison N D, Tabin C J, Schweitzer R (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn, 236(6): 1677–1682
https://doi.org/10.1002/dvdy.21179
pmid: 17497702
|
| 86 |
Pryce B A, Watson S S, Murchison N D, Staverosky J A, Dünker N, Schweitzer R (2009). Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development, 136(8): 1351–1361
https://doi.org/10.1242/dev.027342
pmid: 19304887
|
| 87 |
Rees S G, Waggett A D, Kerr B C, Probert J, Gealy E C, Dent C M, Caterson B, Hughes C E (2009). Immunolocalisation and expression of keratocan in tendon. Osteoarthritis Cartilage, 17(2): 276–279
https://doi.org/10.1016/j.joca.2008.07.007
pmid: 18762436
|
| 88 |
Richardson S H, Starborg T, Lu Y, Humphries S M, Meadows R S, Kadler K E (2007). Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol, 27(17): 6218–6228
https://doi.org/10.1128/MCB.00261-07
pmid: 17562872
|
| 89 |
Rickert M, Jung M, Adiyaman M, Richter W, and Simank H G (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19(2): 115–126
https://doi.org/10.3109/08977190109001080
pmid: 11769971
|
| 90 |
Rountree R B, Schoor M, Chen H, Marks M E, Harley V, Mishina Y, Kingsley D M (2004). BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2(11): e355
https://doi.org/10.1371/journal.pbio.0020355
pmid: 15492776
|
| 91 |
Rubio-Azpeitia E, Sánchez P, Delgado D, Andia I (2015). Three-dimensional platelet rich plasma hydrogel model to study early tendon healing. Cells Tissues Organs, 200(6): 394–404
https://doi.org/10.1159/000441053
pmid: 26562323
|
| 92 |
Runesson E, Ackermann P, Brisby H, Karlsson J, Eriksson B I (2013). Detection of slow-cycling and stem/progenitor cells in different regions of rat Achilles tendon: response to treadmill exercise. Knee Surg Sports Traumatol Arthrosc, 21(7): 1694–1703
https://doi.org/10.1007/s00167-013-2446-7
pmid: 23404516
|
| 93 |
Runesson E, Ackermann P, Karlsson J, Eriksson B I (2015). Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord, 16(212): 1
https://doi.org/10.1186/s12891-015-0658-3
pmid: 26290425
|
| 94 |
Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N, Stange D E, van Es J H, Abo A, Kujala P, Peters P J, Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262–265
https://doi.org/10.1038/nature07935
pmid: 19329995
|
| 95 |
Schwartz A G, Galatz L M, Thomopoulos S (2017). Enthesis regeneration: a role for Gli1+ progenitor cells. Development, 144(7): 1159–1164
https://doi.org/10.1242/dev.139303
pmid: 28219952
|
| 96 |
Schwartz Y, Viukov S, Krief S, Zelzer E (2016). Joint development involves a continuous influx of Gdf5-positive cells. Cell Reports, 15(12): 2577–2587
https://doi.org/10.1016/j.celrep.2016.05.055
pmid: 27292641
|
| 97 |
Schweitzer R, Chyung J H, Murtaugh L C, Brent A E, Rosen V, Olson E N, Lassar A, Tabin C J (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128(19): 3855–3866
pmid: 11585810
|
| 98 |
Shah R R, Nerurkar N L, Wang C C, Galloway J L (2015). Tensile properties of craniofacial tendons in the mature and aged zebrafish. J Orthop Res, 33(6): 867–873
https://doi.org/10.1002/jor.22847
pmid: 25665155
|
| 99 |
Shih I M (1999). The role of CD146 (Mel-CAM) in biology and pathology. J Pathol, 189(1): 4–11
https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<4::AID-PATH332>3.0.CO;2-P
pmid: 10451481
|
| 100 |
Shukunami C, Takimoto A, Oro M, Hiraki Y (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol, 298(1): 234–247
https://doi.org/10.1016/j.ydbio.2006.06.036
pmid: 16876153
|
| 101 |
Snippert H J, van der Flier L G, Sato T, van Es J H, van den Born M, Kroon-Veenboer C, Barker N, Klein A M, van Rheenen J, Simons B D, Clevers H (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1): 134–144
https://doi.org/10.1016/j.cell.2010.09.016
pmid: 20887898
|
| 102 |
Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71
https://doi.org/10.1038/5007
pmid: 9916792
|
| 103 |
Starborg T, Kalson N S, Lu Y, Mironov A, Cootes T F, Holmes D F, Kadler K E (2013). Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc, 8(7): 1433–1448
https://doi.org/10.1038/nprot.2013.086
pmid: 23807286
|
| 104 |
Staverosky J A, Pryce B A, Watson S S, Schweitzer R (2009). Tubulin polymerization-promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Dev Dyn, 238(3): 685–692
https://doi.org/10.1002/dvdy.21865
pmid: 19235716
|
| 105 |
Subramanian A and Schilling T F (2014). Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife, 3: e02372
https://doi.org/10.7554/eLife.02372
pmid: 24941943
|
| 106 |
Subramanian A and Schilling T F (2015). Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development, 142(24): 4191–4204
https://doi.org/10.1242/dev.114777
pmid: 26672092
|
| 107 |
Subramanian A, Wayburn B, Bunch T, Volk T (2007). Thrombospondin-mediated adhesion is essential for the formation of the myotendinous junction in Drosophila. Development, 134(7): 1269–1278
https://doi.org/10.1242/dev.000406
pmid: 17314133
|
| 108 |
Sugimoto Y, Takimoto A, Hiraki Y, Shukunami C (2013). Generation and characterization of ScxCre transgenic mice. Genesis, 51(4): 275–283
https://doi.org/10.1002/dvg.22372
pmid: 23349075
|
| 109 |
Sundar S, Pendegrass C J, Blunn G W (2009). Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater, 88B(1): 115–122
https://doi.org/10.1002/jbm.b.31157
pmid: 18683228
|
| 110 |
Tan Q, Lui P P Y, Lee Y W (2013). In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev, 22(23): 3128–3140
https://doi.org/10.1089/scd.2013.0073
pmid: 23815595
|
| 111 |
Thomopoulos S, Williams G R, Gimbel J A, Favata M, Soslowsky L J (2003). Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res, 21(3): 413–419
https://doi.org/10.1016/S0736-0266(03)0057-3
pmid: 12706013
|
| 112 |
Tidball J G, Lin C (1989). Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell Tissue Res, 257(1): 77–84
https://doi.org/10.1007/BF00221636
pmid: 2752414
|
| 113 |
Urdzikova L M, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Sykova E, Jendelova P (2014). Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online, 13(42): 1–15
https://doi.org/10.1186/1475-925X-13-42
pmid: 24410918
|
| 114 |
Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M (2017). Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med, 11(11): 3202–3219
https://doi.org/10.1002/term.2209
pmid: 27597421
|
| 115 |
Wang Y, Zhang X, Huang H, Xia Y, Yao Y, Mak A F, Yung P S, Chan K M, Wang L, Zhang C, Huang Y, Mak K K (2017). Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. eLife, 6: e30474
https://doi.org/10.7554/eLife.30474
pmid: 29244023
|
| 116 |
Watson S S, Riordan T J, Pryce B A, Schweitzer R (2009). Tendons and muscles of the mouse forelimb during embryonic development. Dev Dyn, 238(3): 693–700
https://doi.org/10.1002/dvdy.21866
pmid: 19235726
|
| 117 |
Wolfman N M, Hattersley G, Cox K, Celeste A J, Nelson R, Yamaji N, Dube J L, DiBlasio-Smith E, Nove J, Song J J, Wozney J M, Rosen V (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest, 100(2): 321–330
https://doi.org/10.1172/JCI119537
pmid: 9218508
|
| 118 |
Wu Y, Wang Z, Ying Hsi Fuh J, San Wong Y, Wang W, San Thian E (2017). Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater, 105(3): 616–627
https://doi.org/10.1002/jbm.b.33580
pmid: 26671608
|
| 119 |
Wu Y, Wong Y S, Fuh J Y H (2017). Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J Biomed Mater Res A, 105(4): 1138–1149
https://doi.org/10.1002/jbm.a.35966
pmid: 27886664
|
| 120 |
Yin H, Yan Z, Bauer R J, Peng J, Schieker M, Nerlich M, Docheva D (2018). Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomed Mater, 13(3): 034107
https://doi.org/10.1088/1748-605X/aaadd1
pmid: 29417934
|
| 121 |
Yoshimoto Y, Takimoto A, Watanabe H, Hiraki Y, Kondoh G, Shukunami C (2017). Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep, 7: 1-16
https://doi.org/10.1038/srep45010
pmid: 28327634
|
| 122 |
Zampeli F, Terzidis I, Espregueiera-Mendes J, Georgoulis J D, Bernard M, Pappas E, Georgoulis A D (2017). Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics. Knee Surg Sports Traumatol Arthrosc, 25(6): 1367-1374
https://doi.org/10.1007/s00167-017-4742-0
pmid: 29067474
|
| 123 |
Zhang J and Wang J H C (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 11(10): 1
https://doi.org/10.1186/1471-2474-11-10
pmid: 20082706
|
| 124 |
Zhang Y, Kao W W Y, Hayashi Y, Zhang L, Call M, Dong F, Yuan Y, Zhang J, Wang Y C, Yuka O, Shiraishi A, Liu C Y (2017). Generation and characterization of a novel mouse line, Keratocan-rtTA (KeraRT), for corneal stroma and tendon research. Invest Ophthalmol Vis Sci, 58(11): 4800–4808
https://doi.org/10.1167/iovs.17-22661
pmid: 28973326
|
| 125 |
Zheng G X Y, Terry J M, Belgrader P, Ryvkin P, Bent Z W, Wilson R, Ziraldo S B, Wheeler T D, McDermott G P, Zhu J, Gregory M T, Shuga J, Montesclaros L, Underwood J G, Masquelier D A, Nishimura S Y, Schnall-Levin M, Wyatt P W, Hindson C M, Bharadwaj R, Wong A, Ness K D, Beppu L W, Deeg H J, McFarland C, Loeb K R, Valente W J, Ericson N G, Stevens E A, Radich J P, Mikkelsen T S, Hindson B J, Bielas J H (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun, 8: 1-12
https://doi.org/10.1038/ncomms14049
pmid: 28091601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|