Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (4) : 263-276    https://doi.org/10.1007/s11515-018-1504-4
REVIEW
Origin of tendon stem cells in situ
Tyler Harvey1,2, Chen-Ming Fan1,2()
1. Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
2. Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
 Download: PDF(298 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Adult stem cells are surveillance repositories capable of supplying a renewable source of progenitors for tissue repair and regeneration to maintain tissue homeostasis throughout life. Many tissue-resident stem cells have been identified in situ, which lays the foundation for studying them in their native microenvironment, i.e. the niche. Within the musculoskeletal system, muscle stem cells have been unequivocally identified in the mouse, which have led to considerable advances in understanding their role in muscle homeostasis and regeneration. On the other hand, for bone and tendon progenitor cells, mesenchymal stem cells have been used as the main in vitro cell model as they can differentiate into osteogenic, chondrogenic and tenogenic fates. Despite considerable efforts and employment of modern tools, the in vivo origins of bone and tendon stem cells remain debated. Tendon regeneration via stem cells is understudied and deserves attention as tendon damage is noted for a bleak, time-consuming recovery and the repaired tendon seldom regains the structural integrity and strength of the native, uninjured state.

OBJECTIVE: Here we review the past efforts and recent studies toward defining adult tendon stem cells and understanding tendon regeneration instead of tendon development. The focus is on adult tendon resident cells in situ and the uncertainty of their roles in regeneration.

METHODS: A systematic literature search using the Pubmed search engine was conducted encompassing the seminal papers in the tendon field.

CONCLUSIONS: Investigation of tendon stem cells in situ is in its infancy mainly due to lack of necessary tools and standardized injury model. We propose a concerted effort toward establishing a comprehensive cell atlas of the tendon, making genetic tools and choosing a reliable injury model for coordinated studies among different laboratories. Increasing our basic understanding should aid future therapeutic innovations to shorten and enhance the tendon repair/regeneration process.

Keywords Tendon      stem cells      midsubstance      sheath      injury     
Corresponding Author(s): Chen-Ming Fan   
Online First Date: 12 July 2018    Issue Date: 10 September 2018
 Cite this article:   
Tyler Harvey,Chen-Ming Fan. Origin of tendon stem cells in situ[J]. Front. Biol., 2018, 13(4): 263-276.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1504-4
https://academic.hep.com.cn/fib/EN/Y2018/V13/I4/263
Fig.1  Brief overview of adult tendon: A) Cartoon of Achilles tendon and outstanding questions (b) in the tendon regeneration field. Achilles tendon structure shown intact with the Gastrocnemius muscle and inserted into the calcaneus bone. Transitional zones: myotendinous junction (MTJ); pink-white, and enthesis; gray-white, are depicted as gradients. B) Cross-section view of the tendon with anatomical position of resident cell types specified and questions surrounding them; individual tendon fascicles (white units) that contain collagen fibers of varying diameter sizes (green circles). Internal fibroblasts (blue stars) lie in between fibers; zoomed out view depicted. Putative locations of tendon stem cells (red) based off of LRC studies. Perivascular cells (black) surrounding blood vessels (pink circle) are found in the loose connective tissue sheaths (gray) along with fibroblasts (orange). Unsolved and outstanding questions are stated as such in the figure.
Injury paradigm Clinical presentation modeling Advantages Disadvantages
Local collagenase injection (Dahlgren et al., 2002; Urdzikova et al., 2014) Tendinopathy; Matrix/Collagen remodeling Facilitates understanding matrix remodeling; can be locally injected making it minimally invasive Difficult to control diffusion into tissues surrounding tendon, which may complicate the autonomy of the repairing tendon; hypervariable outcomes; not physiologically relevant
Achilles overloading by muscle ablation (Gumucio et al., 2014)
or treadmill running (Runesson et al., 2013)
To study tension modulation and hypertrophic growth; mimics trauma victims (i.e. muscle injuries) Allows for deciphering consequence of increased/decreased tension Pleiotrophic effects from multi-tissue damage/repair process complicate understanding local response of tendon
Burn injury
(Peterson et al., 2015)
Mimics tendinopathy; trauma victims Non-invasive approach, not requiring surgery Highly variable; damages many tissues complicating the autonomy of the repairing tendon
Mid-2/3 tendon
incision (horizontal)
or excision
(Beason et al., 2012)
Acute tendon tear; fibrotic scarring Mimics acute tears presented clinically; allows studying regeneration when tension is maintained; enables understanding of fibrotic scar formation Regeneration success varies depending on which tendon performed; can affect mobility; requires surgery and anesthesia to perform.
Central 1/3 patellar tendon excision
(longitudinal) (Dyment et al., 2014)
Acute tendon tear; Collagenous bridge formation Maintains tension by lateral struts; often used for ACL reconstruction Form a ‘collagenous bridge’ covering the surface over the wounded region without generating tendon fibrils—‘failure to regenerate’
Complete Achilles tendon tear or transection (Runesson et al., 2015)
(Howell et al., 2017)
Mimics common clinical presentation Facilitates understanding fibrotic tissue accumulation and scar formation This injury affects mobility, sutures are often used to mechanically stabilize tendon stumps, functioning as a substrate/bridge for regeneration. Suturing technique can affect outcome (Mazzocca et al., 2005; Kim et al., 2006); results in fibrotic scar formation not regeneration.
Biopsy punch
(Lin et al., 2006)
Mimics minor tear in otherwise intact tendon Reproducible injury model; offers a window to study the repair process at a cellular level and have little impact on mobility Requires surgery and anesthesia to perform
Needle punch
(Schwartz et al., 2017)
Mimics tendon-bone injuries For enthesis regeneration; different gauge needles can be used Post-op requires microCT to confirm the location of the injury (outside or inside of the enthesis); requires large cohort given the nature of bony defects
Tab.1  Tendon injury paradigms
1 Agarwal S, Loder S J, Cholok D, Peterson J, Li J, Breuler C, Cameron Brownley R, Hsin Sung H, Chung M T, Kamiya N, Li S, Zhao B, Kaartinen V, Davis T A, Qureshi A T, Schipani E, Mishina Y, Levi B (2017). Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells, 35(3): 705–710
https://doi.org/10.1002/stem.2515 pmid: 27862618
2 Anderson D M, Arredondo J, Hahn K, Valente G, Martin J F, Wilson-Rawls J, Rawls A (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn, 235(3): 792–801
https://doi.org/10.1002/dvdy.20671 pmid: 16408284
3 Arble J R, Lalley A L, Dyment N A, Joshi P, Shin D G, Gooch C, Grawe B, Rowe D, Shearn J T (2016). The LG/J murine strain exhibits near-normal tendon biomechanical properties following a full-length central patellar tendon defect. Connect Tissue Res, 57(6): 496–506
https://doi.org/10.1080/03008207.2016.1213247 pmid: 27552106
4 Ateschrang A, Ahmad S S, Stöckle U, Schroeter S, Schenk S, Ahrend M D (2017). Recovery of ACL function after dynamic intraligamentary stabilization is resultant to restoration of ACL integrity and scar tissue formation. Knee Surg Sports Tramatol Arthrosc
https://doi.org/10.1007/s00167-017-4656-x
5 Bagchi R A and Czubryt M P (2012). Synergistic roles of scleraxis and Smads in the regulation of collagen 1a2 gene expression. Biochim Biophys Acta, 1823(10): 1936–1944
https://doi.org/10.1016/j.bbamcr.2012.07.002 pmid: 22796342
6 Bajpai V K, Mistriotis P, Andreadis S T (2012). Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res (Amst), 8(1): 74–84
https://doi.org/10.1016/j.scr.2011.07.003 pmid: 22099022
7 Baksh N, Hannon C P, Murawski C D, Smyth N A, Kennedy J G (2013). Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy, 29(3): 596–607
https://doi.org/10.1016/j.arthro.2012.10.025 pmid: 23352397
8 Bao Z Z, Lakonishok M, Kaufman S, Horwitz A F (1993). Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci, 106(Pt 2): 579–589
pmid: 8282763
9 Barker N, van Es J H, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters P J, Clevers H (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007
https://doi.org/10.1038/nature06196 pmid: 17934449
10 Beason D P, Kuntz A F, Hsu J E, Miller K S, Soslowsky L J (2012). Development and evaluation of multiple tendon injury models in the mouse. J Biomech, 45(8): 1550–1553
https://doi.org/10.1016/j.jbiomech.2012.02.022 pmid: 22405494
11 Benjamin M and Ralphs J R (1998). Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat, 193(4): 481–494
https://doi.org/10.1046/j.1469-7580.1998.19340481.x pmid: 10029181
12 Berthet E, Chen C, Butcher K, Schneider R A, Alliston T, Amirtharajah M (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res, 31(9): 1475–1483
https://doi.org/10.1002/jor.22382 pmid: 23653374
13 Bi Y, Ehirchiou D, Kilts T M, Inkson C A, Embree M C, Sonoyama W, Li L, Leet A I, Seo B M, Zhang L, Shi S, Young M F (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 13(10): 1219–1227
https://doi.org/10.1038/nm1630 pmid: 17828274
14 Brent A E, Schweitzer R, Tabin C J (2003). A somitic compartment of tendon progenitors. Cell, 113(2): 235–248
https://doi.org/10.1016/S0092-8674(03)00268-X pmid: 12705871
15 Brent A E, Tabin C J (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131(16): 3885–3896
https://doi.org/10.1242/dev.01275 pmid: 15253939
16 Buschmann J, Bürgisser G M ( 2017). Biomechanics on tendons and ligaments. Zurich: Elsevier, Print
17 Cairns J (1975). Mutation selection and the natural history of cancer. Nature, 255(5505): 197–200
https://doi.org/10.1038/255197a0 pmid: 1143315
18 Calve S, Dennis R G, Kosnik P E 2nd, Baar K, Grosh K, Arruda E M (2004). Engineering of functional tendon. Tissue Eng, 10(5-6): 755–761
https://doi.org/10.1089/1076327041348464 pmid: 15265292
19 Chan B P, Fu S, Qin L, Lee K, Rolf C G, Chan K (2000). Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand, 71(5): 513–518
https://doi.org/10.1080/000164700317381234 pmid: 11186411
20 Chang J, Thunder R, Most D, Longaker M T, Lineaweaver W C (2000). Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg, 105(1): 148–155
https://doi.org/10.1097/00006534-200001000-00025 pmid: 10626983
21 Charvet B, Ruggiero F, Le Guellec D (2012). The development of the myotendinous junction. A review. Muscles Ligaments Tendons J, 2(2): 53–63
pmid: 23738275
22 Chien C, Pryce B, Tufa S F, Keene D R, Huang A H (2017). Optimizing a 3D model system for molecular manipulation of tenogenesis. Connect Tissue Res, 22: 1–14
https://doi.org/10.1080/03008207.2017.1383403 pmid: 28937836
23 Covas D T, Panepucci R A, Fontes A M, Silva W A Jr, Orellana M D, Freitas M C, Neder L, Santos A R, Peres L C, Jamur M C, Zago M A (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol, 36(5): 642–654
https://doi.org/10.1016/j.exphem.2007.12.015 pmid: 18295964
24 Cserjesi P, Brown D, Ligon K L, Lyons G E, Copeland N G, Gilbert D J, Jenkins N A, Olson E N (1995). Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development, 121(4): 1099–1110
pmid: 7743923
25 Dahlgren L A, van der Meulen M C, Bertram J E, Starrak G S, Nixon A J (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res, 20(5): 910–919
https://doi.org/10.1016/S0736-0266(02)00009-8 pmid: 12382953
26 Dorrell C, Erker L, Schug J, Kopp J L, Canaday P S, Fox A J, Smirnova O, Duncan A W, Finegold M J, Sander M, Kaestner K H, Grompe M (2011). Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev, 25(11): 1193–1203
https://doi.org/10.1101/gad.2029411 pmid: 21632826
27 Dyment N A, Breidenbach A P, Schwartz A G, Russell R P, Aschbacher-Smith L, Liu H, Hagiwara Y, Jiang R, Thomopoulos S, Butler D L, Rowe D W (2015). Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol, 405(1): 96–107
https://doi.org/10.1016/j.ydbio.2015.06.020 pmid: 26141957
28 Dyment N A, Hagiwara Y, Matthews B G, Li Y, Kalajzic I, Rowe D W (2014). Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One, 9(4): e96113
https://doi.org/10.1371/journal.pone.0096113 pmid: 24759953
29 Edom-Vovard F, Duprez D (2004). Signals regulating tendon formation during chick embryonic development. Dev Dyn, 229(3): 449–457
https://doi.org/10.1002/dvdy.10481 pmid: 14991700
30 Elliott D H (1965). Structure and Function of Mammalian Tendon. Biol Rev Camb Philos Soc, 40(3): 392–421
https://doi.org/10.1111/j.1469-185X.1965.tb00808.x pmid: 14340913
31 Feil R, Wagner J, Metzger D, Chambon P (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun, 237(3): 752–757
https://doi.org/10.1006/bbrc.1997.7124 pmid: 9299439
32 Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. PNAS 93: 10887–10890
pmid: PMCID: PMC38252
33 Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V (2007). Collagen structure of tendon relates to function. Sci World J, 7: 404–420
https://doi.org/10.1100/tsw.2007.92 pmid: 17450305
34 Frolova E G, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens G J, Plow E F, Stenina-Adognravi O (2014). Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol, 37: 35–48
https://doi.org/10.1016/j.matbio.2014.02.003 pmid: 24589453
35 Fukui N, Katsuragawa Y, Sakai H, Oda H, Nakamura K (1998). Effect of local application of basic fibroblast growth factor on ligament healing in rabbits. Rev Rhum Engl Ed, 65(6): 406–414
pmid: 9670333
36 Gaut L, Duprez D (2016). Tendon development and diseases. Dev Biol, 5(1): 5–23
https://doi.org/10.1002/wdev.201 pmid: 26256998
37 Gaut L, Robert N, Delalande A, Bonnin M A, Pichon C, Duprez D (2016). EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS One, 11(11): e0166237
https://doi.org/10.1371/journal.pone.0166237 pmid: 27820865
38 Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina M E, Ordóñez-Morán P, Clevers H, Lutolf M P (2016). Designer matrices for intestinal stem cell and organoid culture. Nature, 539(7630): 560–564
https://doi.org/10.1038/nature20168 pmid: 27851739
39 Grcevic D, Pejda S, Matthews B G, Repic D, Wang L, Li H, Kronenberg M S, Jiang X, Maye P, Adams D J, Rowe D W, Aguila H L, Kalajzic I (2012). In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells, 30(2): 187–196
https://doi.org/10.1002/stem.780 pmid: 22083974
40 Guerquin M J, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin M A, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler K E, Baumberger T, Doursounian L, Berenbaum F, Duprez D (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest, 123(8): 3564–3576
https://doi.org/10.1172/JCI67521 pmid: 23863709
41 Gumucio J P, Phan A C, Ruehlmann D G, Noah A C, Mendias C L (2014). Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol (1985), 117(11): 1287–1291
https://doi.org/10.1152/japplphysiol.00720.2014 pmid: 25277742
42 Hall T E, Bryson-Richardson R J, Berger S, Jacoby A S, Cole N J, Hollway G E, Berger J, Currie P D (2007). The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin 2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA, 104(17): 7092–7
https://doi.org/10.1073/pnas.0700942104 pmid: 17438294
43 Hexter A T, Pendegrass C, Haddad F, Blunn G (2017). Demineralized Bone Matrix to Augment Tendon-Bone Healing: A Systematic Review. Orthop J Sports Med, 5(10): 2325967117734517
https://doi.org/10.1177/2325967117734517 pmid: 29124078
44 Hildebrand K A, Woo S L, Smith D W, Allen C R, Deie M, Taylor B J, Schmidt C C (1998). The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med, 26(4): 549–554
https://doi.org/10.1177/03635465980260041401 pmid: 9689377
45 Hoffman P N, Cleveland D W (1988). Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific b-tubulin isotype. Proc Natl Acad Sci USA, 85(12): 4530–4533
https://doi.org/10.1073/pnas.85.12.4530 pmid: 3132717
46 Howell K, Chien C, Bell R, Laudier D, Tufa S F, Keene D R, Andarawis-Puri N, Huang A H (2017) Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep, 7: 45238
https://doi.org/10.1038/srep45238
47 Huang A H, Lu H H, Schweitzer R (2015). Molecular regulation of tendon cell fate during development. J Orthop Res, 33(6): 800–812
https://doi.org/10.1002/jor.22834 pmid: 25664867
48 Ibraghimov-Beskrovnaya O, Ervasti J M, Leveille C J, Slaughter C A, Sernett S W, Campbell K P (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355(6362): 696–702
https://doi.org/10.1038/355696a0 pmid: 1741056
49 Imokawa Y, Yoshizato K (1997). Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci USA, 94(17): 9159–9164
https://doi.org/10.1073/pnas.94.17.9159 pmid: 9256452
50 Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S, Asahara H (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA, 107(23): 10538–10542
https://doi.org/10.1073/pnas.1000525107 pmid: 20498044
51 Ivkovic S, Yoon B S, Popoff S N, Safadi F F, Libuda D E, Stephenson R C, Daluiski A, Lyons K M (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development, 130(12): 2779–2791
https://doi.org/10.1242/dev.00505 pmid: 12736220
52 Kajikawa Y, Morihara T, Sakamoto H, Matsuda K, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008). Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol, 215(3): 837–845
https://doi.org/10.1002/jcp.21368 pmid: 18181148
53 Kaux J F, Janssen L, Drion P, Nusgens B, Libertiaux V, Pascon F, Heyeres A, Hoffmann A, Lambert C, Le Goff C, Denoël V, Defraigne J O, Rickert M, Crielaard J M, Colige A (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscles Ligaments Tendons J, 4(1): 24–28
pmid: 24932443
54 Kirkendall D T and Garrett W E (1997). Function and biomechanics of tendons. Scand J Med Sci Sports, 7(2): 62–66
https://doi.org/10.1111/j.1600-0838.1997.tb00120.x pmid: 9211605
55 Kretzschmar K and Watt F M (2012). Lineage tracing. Cell, 148(1-2): 33–45
https://doi.org/10.1016/j.cell.2012.01.002 pmid: 22265400
56 Kurth T B, Dell’Accio F, Crouch V, Augello A, Sharpe P T, De Bari C (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum, 63(5): 1289–1300
https://doi.org/10.1002/art.30234
57 Kurtz C A, Loebig T G, Anderson D D, DeMeo P J, Campbell P G (1999). Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med, 27(3): 363–369
https://doi.org/10.1177/03635465990270031701 pmid: 10352775
58 Lalley A L, Dyment N A, Kazemi N, Kenter K, Gooch C, Rowe D W, Butler D L, Shearn J T (2015). Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res, 33(11): 1693–1703
https://doi.org/10.1002/jor.22928 pmid: 25982892
59 Lee C H, Lee F Y, Tarafder S, Kao K, Jun Y, Yang G, Mao J J (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest, 125(7): 2690–2701
https://doi.org/10.1172/JCI81589 pmid: 26053662
60 Léjard V, Blais F, Guerquin M J, Bonnet A, Bonnin M A, Havis E, Malbouyres M, Bidaud C B, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D (2011). EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem, 286(7): 5855–5867
https://doi.org/10.1074/jbc.M110.153106 pmid: 21173153
61 Léjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl M H, Noda M, Duprez D, Houillier P, Rossert J (2007). Scleraxis and NFATc regulate the expression of the pro-a1(I) collagen gene in tendon fibroblasts. J Biol Chem, 282(24): 17665–17675
https://doi.org/10.1074/jbc.M610113200 pmid: 17430895
62 Leong D J, Sun H B (2016). Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci, 1383(1): 88–96
https://doi.org/10.1111/nyas.13262 pmid: 27706825
63 Letson A K, Dahners L E (1994). The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res, (308): 207–212
pmid: 7955685
64 Levay A K, Peacock J D, Lu Y, Koch M, Hinton R B Jr, Kadler K E, Lincoln J (2008). Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res, 103(9): 948–956
https://doi.org/10.1161/CIRCRESAHA.108.177238 pmid: 18802027
65 Li L and Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545
https://doi.org/10.1126/science.1180794 pmid: 20110496
66 Lin T W, Cardenas L, Glaser D L, Soslowsky L J (2006). Tendon healing in interleukin-4 and interleukin-6 knockout mice. J Biomech, 39(1): 61–69
https://doi.org/10.1016/j.jbiomech.2004.11.009 pmid: 16271588
67 Liu C F, Aschbacher-Smith L, Barthelery N J, Dyment N, Butler D, and Wylie C (2012). Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A, 18(5-6): 598–608
https://doi.org/10.1089/ten.tea.2011.0338 pmid: 21939397
68 Liu H, Xu J, Liu C F, Lan Y, Wylie C, Jiang R (2015). Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res, 33(6): 840–848
https://doi.org/10.1002/jor.22886 pmid: 25729011
69 Liu R, Zhang Z, Xu Y (2010). Downregulation of nucleostemin causes G1 cell cycle arrest via a p53-independent pathway in prostate cancer PC-3 cells. Urol Int, 85(2): 221–227
https://doi.org/10.1159/000315968 pmid: 20664182
70 Liu Z, Martin L J (2003). Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol, 459(4): 368–391
https://doi.org/10.1002/cne.10664 pmid: 12687705
71 Lu H H, Thomopoulos S (2013). Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng, 15(1): 201–226
https://doi.org/10.1146/annurev-bioeng-071910-124656 pmid: 23642244
72 Lui P, Zhang P, Chan K, Qin L (2010). Biology and augmentation of tendon-bone insertion repair. J Orthop Surg, 5(1): 59
https://doi.org/10.1186/1749-799X-5-59 pmid: 20727196
73 Lyras D N, Kazakos K, Verettas D, Botaitis S, Agrogiannis G, Kokka A, Pitiakoudis M, Kotzakaris A (2009). The effect of platelet-rich plasma gel in the early phase of patellar tendon healing. Arch Orthop Trauma Surg, 129(11): 1577–1582
https://doi.org/10.1007/s00402-009-0935-4 pmid: 19621231
74 Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera A L, Keene D R, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilic D, Baskaran H, Sakai T (2011). Conversion of mechanical force into TGF-b-mediated biochemical signals. Curr Biol, 21(11): 933–941
https://doi.org/10.1016/j.cub.2011.04.007 pmid: 21600772
75 Mendias C L, Gumucio J P, Bakhurin K I, Lynch E B, Brooks S V (2012). Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res, 30(4): 606–612
https://doi.org/10.1002/jor.21550 pmid: 21913219
76 Miosge N, Klenczar C, Herken R, Willem M, Mayer U (1999). Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. Lab Invest, 79(12): 1591–1599
pmid: 10616209
77 Molloy T, Wang Y, Murrell G (2003). The roles of growth factors in tendon and ligament healing. Sports Med, 33(5): 381–394
https://doi.org/10.2165/00007256-200333050-00004 pmid: 12696985
78 Murchison N D, Price B A, Conner D A, Keene D R, Olson E N, Tabin C J, Schweitzer R (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134: 2697–2708
https://doi.org/10.1242/dev.001933 PMID:
79 Paxton J Z, Donnelly K, Keatch R P, Baar K (2009). Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A, 15(6): 1201–1209
https://doi.org/10.1089/ten.tea.2008.0105 pmid: 18991487
80 Paxton J Z, Grover L M, Baar K (2010). Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A, 16(11): 3515–3525
https://doi.org/10.1089/ten.tea.2010.0039 pmid: 20593972
81 Perez A V, Perrine M, Brainard N, Vogel K G (2003). Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice. Mech Dev, 120(10): 1153–1163
https://doi.org/10.1016/j.mod.2003.08.003 pmid: 14568104
82 Petersen J R, Agarwal S, Brownley R C, Loder S J, Ranganathan K, Cederna P S, Mishina Y, Wang S C, Levi B (2015). Direct mouse trauma/burn model for heterotopic ossification. J Vis Exp (102): 52880
https://doi.org/10.3791/52880 pmid: 26274052
83 Petersen W, Fink C, Kopf S (2017). Return to sports after ACL reconstruction: a paradigm shift from time to function. Knee Surg Sports Traumatol Arthrosc, 25(5): 1353–1355
https://doi.org/10.1007/s00167-017-4559-x pmid: 28508229
84 Potten C S, Hendry J H (1975). Differential regeneration of intestinal proliferative cells and cryptogenic cells after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med, 27(5): 413–424
https://doi.org/10.1080/09553007514550411 pmid: 1080137
85 Pryce B A, Brent A E, Murchison N D, Tabin C J, Schweitzer R (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn, 236(6): 1677–1682
https://doi.org/10.1002/dvdy.21179 pmid: 17497702
86 Pryce B A, Watson S S, Murchison N D, Staverosky J A, Dünker N, Schweitzer R (2009). Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development, 136(8): 1351–1361
https://doi.org/10.1242/dev.027342 pmid: 19304887
87 Rees S G, Waggett A D, Kerr B C, Probert J, Gealy E C, Dent C M, Caterson B, Hughes C E (2009). Immunolocalisation and expression of keratocan in tendon. Osteoarthritis Cartilage, 17(2): 276–279
https://doi.org/10.1016/j.joca.2008.07.007 pmid: 18762436
88 Richardson S H, Starborg T, Lu Y, Humphries S M, Meadows R S, Kadler K E (2007). Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol, 27(17): 6218–6228
https://doi.org/10.1128/MCB.00261-07 pmid: 17562872
89 Rickert M, Jung M, Adiyaman M, Richter W, and Simank H G (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19(2): 115–126
https://doi.org/10.3109/08977190109001080 pmid: 11769971
90 Rountree R B, Schoor M, Chen H, Marks M E, Harley V, Mishina Y, Kingsley D M (2004). BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2(11): e355
https://doi.org/10.1371/journal.pbio.0020355 pmid: 15492776
91 Rubio-Azpeitia E, Sánchez P, Delgado D, Andia I (2015). Three-dimensional platelet rich plasma hydrogel model to study early tendon healing. Cells Tissues Organs, 200(6): 394–404
https://doi.org/10.1159/000441053 pmid: 26562323
92 Runesson E, Ackermann P, Brisby H, Karlsson J, Eriksson B I (2013). Detection of slow-cycling and stem/progenitor cells in different regions of rat Achilles tendon: response to treadmill exercise. Knee Surg Sports Traumatol Arthrosc, 21(7): 1694–1703
https://doi.org/10.1007/s00167-013-2446-7 pmid: 23404516
93 Runesson E, Ackermann P, Karlsson J, Eriksson B I (2015). Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord, 16(212): 1
https://doi.org/10.1186/s12891-015-0658-3 pmid: 26290425
94 Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N, Stange D E, van Es J H, Abo A, Kujala P, Peters P J, Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262–265
https://doi.org/10.1038/nature07935 pmid: 19329995
95 Schwartz A G, Galatz L M, Thomopoulos S (2017). Enthesis regeneration: a role for Gli1+ progenitor cells. Development, 144(7): 1159–1164
https://doi.org/10.1242/dev.139303 pmid: 28219952
96 Schwartz Y, Viukov S, Krief S, Zelzer E (2016). Joint development involves a continuous influx of Gdf5-positive cells. Cell Reports, 15(12): 2577–2587
https://doi.org/10.1016/j.celrep.2016.05.055 pmid: 27292641
97 Schweitzer R, Chyung J H, Murtaugh L C, Brent A E, Rosen V, Olson E N, Lassar A, Tabin C J (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128(19): 3855–3866
pmid: 11585810
98 Shah R R, Nerurkar N L, Wang C C, Galloway J L (2015). Tensile properties of craniofacial tendons in the mature and aged zebrafish. J Orthop Res, 33(6): 867–873
https://doi.org/10.1002/jor.22847 pmid: 25665155
99 Shih I M (1999). The role of CD146 (Mel-CAM) in biology and pathology. J Pathol, 189(1): 4–11
https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<4::AID-PATH332>3.0.CO;2-P pmid: 10451481
100 Shukunami C, Takimoto A, Oro M, Hiraki Y (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol, 298(1): 234–247
https://doi.org/10.1016/j.ydbio.2006.06.036 pmid: 16876153
101 Snippert H J, van der Flier L G, Sato T, van Es J H, van den Born M, Kroon-Veenboer C, Barker N, Klein A M, van Rheenen J, Simons B D, Clevers H (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1): 134–144
https://doi.org/10.1016/j.cell.2010.09.016 pmid: 20887898
102 Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71
https://doi.org/10.1038/5007 pmid: 9916792
103 Starborg T, Kalson N S, Lu Y, Mironov A, Cootes T F, Holmes D F, Kadler K E (2013). Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc, 8(7): 1433–1448
https://doi.org/10.1038/nprot.2013.086 pmid: 23807286
104 Staverosky J A, Pryce B A, Watson S S, Schweitzer R (2009). Tubulin polymerization-promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Dev Dyn, 238(3): 685–692
https://doi.org/10.1002/dvdy.21865 pmid: 19235716
105 Subramanian A and Schilling T F (2014). Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife, 3: e02372
https://doi.org/10.7554/eLife.02372 pmid: 24941943
106 Subramanian A and Schilling T F (2015). Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development, 142(24): 4191–4204
https://doi.org/10.1242/dev.114777 pmid: 26672092
107 Subramanian A, Wayburn B, Bunch T, Volk T (2007). Thrombospondin-mediated adhesion is essential for the formation of the myotendinous junction in Drosophila. Development, 134(7): 1269–1278
https://doi.org/10.1242/dev.000406 pmid: 17314133
108 Sugimoto Y, Takimoto A, Hiraki Y, Shukunami C (2013). Generation and characterization of ScxCre transgenic mice. Genesis, 51(4): 275–283
https://doi.org/10.1002/dvg.22372 pmid: 23349075
109 Sundar S, Pendegrass C J, Blunn G W (2009). Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater, 88B(1): 115–122
https://doi.org/10.1002/jbm.b.31157 pmid: 18683228
110 Tan Q, Lui P P Y, Lee Y W (2013). In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev, 22(23): 3128–3140
https://doi.org/10.1089/scd.2013.0073 pmid: 23815595
111 Thomopoulos S, Williams G R, Gimbel J A, Favata M, Soslowsky L J (2003). Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res, 21(3): 413–419
https://doi.org/10.1016/S0736-0266(03)0057-3 pmid: 12706013
112 Tidball J G, Lin C (1989). Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell Tissue Res, 257(1): 77–84
https://doi.org/10.1007/BF00221636 pmid: 2752414
113 Urdzikova L M, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Sykova E, Jendelova P (2014). Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online, 13(42): 1–15
https://doi.org/10.1186/1475-925X-13-42 pmid: 24410918
114 Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M (2017). Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med, 11(11): 3202–3219
https://doi.org/10.1002/term.2209 pmid: 27597421
115 Wang Y, Zhang X, Huang H, Xia Y, Yao Y, Mak A F, Yung P S, Chan K M, Wang L, Zhang C, Huang Y, Mak K K (2017). Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. eLife, 6: e30474
https://doi.org/10.7554/eLife.30474 pmid: 29244023
116 Watson S S, Riordan T J, Pryce B A, Schweitzer R (2009). Tendons and muscles of the mouse forelimb during embryonic development. Dev Dyn, 238(3): 693–700
https://doi.org/10.1002/dvdy.21866 pmid: 19235726
117 Wolfman N M, Hattersley G, Cox K, Celeste A J, Nelson R, Yamaji N, Dube J L, DiBlasio-Smith E, Nove J, Song J J, Wozney J M, Rosen V (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest, 100(2): 321–330
https://doi.org/10.1172/JCI119537 pmid: 9218508
118 Wu Y, Wang Z, Ying Hsi Fuh J, San Wong Y, Wang W, San Thian E (2017). Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater, 105(3): 616–627
https://doi.org/10.1002/jbm.b.33580 pmid: 26671608
119 Wu Y, Wong Y S, Fuh J Y H (2017). Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J Biomed Mater Res A, 105(4): 1138–1149
https://doi.org/10.1002/jbm.a.35966 pmid: 27886664
120 Yin H, Yan Z, Bauer R J, Peng J, Schieker M, Nerlich M, Docheva D (2018). Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomed Mater, 13(3): 034107
https://doi.org/10.1088/1748-605X/aaadd1 pmid: 29417934
121 Yoshimoto Y, Takimoto A, Watanabe H, Hiraki Y, Kondoh G, Shukunami C (2017). Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep, 7: 1-16
https://doi.org/10.1038/srep45010 pmid: 28327634
122 Zampeli F, Terzidis I, Espregueiera-Mendes J, Georgoulis J D, Bernard M, Pappas E, Georgoulis A D (2017). Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics. Knee Surg Sports Traumatol Arthrosc, 25(6): 1367-1374
https://doi.org/10.1007/s00167-017-4742-0 pmid: 29067474
123 Zhang J and Wang J H C (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 11(10): 1
https://doi.org/10.1186/1471-2474-11-10 pmid: 20082706
124 Zhang Y, Kao W W Y, Hayashi Y, Zhang L, Call M, Dong F, Yuan Y, Zhang J, Wang Y C, Yuka O, Shiraishi A, Liu C Y (2017). Generation and characterization of a novel mouse line, Keratocan-rtTA (KeraRT), for corneal stroma and tendon research. Invest Ophthalmol Vis Sci, 58(11): 4800–4808
https://doi.org/10.1167/iovs.17-22661 pmid: 28973326
125 Zheng G X Y, Terry J M, Belgrader P, Ryvkin P, Bent Z W, Wilson R, Ziraldo S B, Wheeler T D, McDermott G P, Zhu J, Gregory M T, Shuga J, Montesclaros L, Underwood J G, Masquelier D A, Nishimura S Y, Schnall-Levin M, Wyatt P W, Hindson C M, Bharadwaj R, Wong A, Ness K D, Beppu L W, Deeg H J, McFarland C, Loeb K R, Valente W J, Ericson N G, Stevens E A, Radich J P, Mikkelsen T S, Hindson B J, Bielas J H (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun, 8: 1-12
https://doi.org/10.1038/ncomms14049 pmid: 28091601
[1] Thai Q. Dao, Jennifer C. Fletcher. CLE peptide-mediated signaling in shoot and vascular meristem development[J]. Front. Biol., 2017, 12(6): 406-420.
[2] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[3] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[4] Gabrielle Rushing,Rebecca A. Ihrie. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone[J]. Front. Biol., 2016, 11(4): 261-284.
[5] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[6] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[7] Jin He. Function of Polycomb repressive complexes in stem cells[J]. Front. Biol., 2016, 11(2): 65-74.
[8] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[9] Stuart J. Grice,Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Front. Biol., 2015, 10(4): 297-309.
[10] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[11] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[12] Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
[13] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[14] Wei Bin FANG,Min YAO,Nikki CHENG. Priming cancer cells for drug resistance: role of the fibroblast niche[J]. Front. Biol., 2014, 9(2): 114-126.
[15] Yiping LI,Chandler L. WALKER,Yi Ping ZHANG,Christopher B. SHIELDS,Xiao-Ming XU. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation[J]. Front. Biol., 2014, 9(2): 127-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed