|
|
Intracellular trafficking of planar cell polarity proteins |
Yan Huang, Tianji Ma, Yusong Guo( ) |
Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China |
|
|
Abstract BACKGROUND: Planar cell polarity (PCP) is a phenomenon in which epithelial cells are polarized along the plane of a tissue. PCP is critical for a variety of developmental processes and is regulated by a set of evolutionarily conserved PCP signaling proteins. Many of the PCP proteins adopt characteristic asymmetric localizations on the opposing cellular boundaries. Currently, the molecular mechanisms that establish and maintain this PCP asymmetry remain largely unclear. Newly synthesized integral PCP proteins are transported along the secretory transport pathway to the plasma membranes. Once delivered to the plasma membranes, PCP proteins undergo endocytosis. Recent studies reveal insights into the intracellular trafficking of PCP proteins, suggesting that intracellular trafficking of PCP proteins contributes to establishing the PCP asymmetry. OBJECTIVE: To understand the intracellular trafficking of planar cell polarity proteins in the secretory transport pathway and endocytic transport pathway. METHODS: This review summarizes our current understanding of the intracellular trafficking of PCP proteins. We highlights the molecular mechanisms that regulate sorting of PCP proteins into transport vesicles and how the intracellular trafficking process regulates the asymmetric localizations of PCP proteins. RESULTS: Current studies reveal novel insights into the molecular mechanisms mediating intracellular trafficking of PCP proteins. This process is critical for delivering newly synthesized PCP proteins to their specific destinations, removing the unstable or mislocalized PCP proteins from the plasma membranes and preserving tissue polarity during proliferation of mammalian skin cells. CONCLUSION: Understanding how PCP proteins are delivered in the secretory and endocytic transport pathway will provide mechanistic insights into how the asymmetric localizations of PCP proteins are established and maintained.
|
Corresponding Author(s):
Yusong Guo
|
Online First Date: 25 September 2018
Issue Date: 30 November 2018
|
|
1 |
Adler P N, Zhu C, Stone D (2004). Inturned localizes to the proximal side of wing cells under the instruction of upstream planar polarity proteins. Curr Biol, 14(22): 2046–2051
https://doi.org/10.1016/j.cub.2004.11.007
pmid: 15556868
|
2 |
Aigouy B, Farhadifar R, Staple D B, Sagner A, Röper J C, Jülicher F, Eaton S (2010). Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell, 142(5): 773–786
https://doi.org/10.1016/j.cell.2010.07.042
pmid: 20813263
|
3 |
Ambegaonkar A A, Pan G, Mani M, Feng Y, Irvine K D (2012). Propagation of Dachsous-Fat planar cell polarity. Curr Biol, 22(14): 1302–1308
https://doi.org/10.1016/j.cub.2012.05.049
pmid: 22727698
|
4 |
Angers S, Thorpe C J, Biechele T L, Goldenberg S J, Zheng N, MacCoss M J, Moon R T (2006). The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol, 8(4): 348–357
https://doi.org/10.1038/ncb1381
pmid: 16547521
|
5 |
Axelrod J D (2001). Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev, 15(10): 1182–1187
pmid: 11358862
|
6 |
Bastock R, Strutt H, Strutt D (2003). Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development, 130(13): 3007–3014
https://doi.org/10.1242/dev.00526
pmid: 12756182
|
7 |
Bayly R, Axelrod J D (2011). Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet, 12(6): 385–391
https://doi.org/10.1038/nrg2956
pmid: 21502960
|
8 |
Bellaïche Y, Beaudoin-Massiani O, Stuttem I, Schweisguth F (2004). The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development, 131(2): 469–478
https://doi.org/10.1242/dev.00928
pmid: 14701683
|
9 |
Brittle A, Thomas C, Strutt D (2012). Planar polarity specification through asymmetric subcellular localization of Fat and Dachsous. Curr Biol, 22(10): 907–914
https://doi.org/10.1016/j.cub.2012.03.053
pmid: 22503504
|
10 |
Carvajal-Gonzalez J M, Balmer S, Mendoza M, Dussert A, Collu G, Roman A C, Weber U, Ciruna B, Mlodzik M (2015). The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nat Commun, 6(1): 6751
https://doi.org/10.1038/ncomms7751
pmid: 25849195
|
11 |
Chen W, Hu L A, Semenov M V, Yanagawa S, Kikuchi A, Lefkowitz R J, Miller W E (2001). beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci USA, 98(26): 14889–14894
https://doi.org/10.1073/pnas.211572798
pmid: 11742073
|
12 |
Chen W, ten Berge D, Brown J, Ahn S, Hu L A, Miller W E, Caron M G, Barak L S, Nusse R, Lefkowitz R J (2003). Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science, 301(5638): 1391–1394
https://doi.org/10.1126/science.1082808
pmid: 12958364
|
13 |
Chen W S, Antic D, Matis M, Logan C Y, Povelones M, Anderson G A, Nusse R, Axelrod J D (2008). Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell, 133(6): 1093–1105
https://doi.org/10.1016/j.cell.2008.04.048
pmid: 18555784
|
14 |
Cho B, Pierre-Louis G, Sagner A, Eaton S, Axelrod J D (2015). Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle. PLoS Genet, 11(5): e1005259
https://doi.org/10.1371/journal.pgen.1005259
pmid: 25996914
|
15 |
Classen A K, Anderson K I, Marois E, Eaton S (2005). Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell, 9(6): 805–817
https://doi.org/10.1016/j.devcel.2005.10.016
pmid: 16326392
|
16 |
Devenport D (2014). The cell biology of planar cell polarity. J Cell Biol, 207(2): 171–179
https://doi.org/10.1083/jcb.201408039
pmid: 25349257
|
17 |
Devenport D, Fuchs E (2008). Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol, 10(11): 1257–1268
https://doi.org/10.1038/ncb1784
pmid: 18849982
|
18 |
Devenport D, Oristian D, Heller E, Fuchs E (2011). Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nat Cell Biol, 13(8): 893–902
https://doi.org/10.1038/ncb2284
pmid: 21743464
|
19 |
Donaldson J G, Jackson C L (2011). ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol, 12(6): 362–375
https://doi.org/10.1038/nrm3117
pmid: 21587297
|
20 |
Feiguin F, Hannus M, Mlodzik M, Eaton S (2001). The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev Cell, 1(1): 93–101
https://doi.org/10.1016/S1534-5807(01)00010-7
pmid: 11703927
|
21 |
Gault W J, Olguin P, Weber U, Mlodzik M (2012). Drosophila CK1-g, gilgamesh, controls PCP-mediated morphogenesis through regulation of vesicle trafficking. J Cell Biol, 196(5): 605–621
https://doi.org/10.1083/jcb.201107137
pmid: 22391037
|
22 |
Gho M, Schweisguth F (1998). Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature, 393(6681): 178–181
https://doi.org/10.1038/30265
pmid: 9603522
|
23 |
Gillingham A K, Munro S (2007). The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol, 23(1): 579–611
https://doi.org/10.1146/annurev.cellbio.23.090506.123209
pmid: 17506703
|
24 |
Guo Y, Sirkis D W, Schekman R (2014). Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol, 30(1): 169–206
https://doi.org/10.1146/annurev-cellbio-100913-013012
pmid: 25150009
|
25 |
Guo Y, Zanetti G, Schekman R (2013). A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. Elife, 2: e00160
pmid: 23326640
|
26 |
Harumoto T, Ito M, Shimada Y, Kobayashi T J, Ueda H R, Lu B, Uemura T (2010). Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev Cell, 19(3): 389–401
https://doi.org/10.1016/j.devcel.2010.08.004
pmid: 20817616
|
27 |
Heck B W, Devenport D ( 2017). Trans-endocytosis of planar cell polarity complexes during cell division. Curr Biol, 27: 3725–3733
|
28 |
Heldwein E E, Macia E, Wang J, Yin H L, Kirchhausen T, Harrison S C (2004). Crystal structure of the clathrin adaptor protein 1 core. Proc Natl Acad Sci USA, 101(39): 14108–14113
https://doi.org/10.1073/pnas.0406102101
pmid: 15377783
|
29 |
Hirst J, Motley A, Harasaki K, Peak Chew S Y, Robinson M S (2003). EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol Biol Cell, 14(2): 625–641
https://doi.org/10.1091/mbc.e02-09-0552
pmid: 12589059
|
30 |
Kibar Z, Underhill D A, Canonne-Hergaux F, Gauthier S, Justice M J, Gros P (2001a). Identification of a new chemically induced allele (Lp(m1Jus)) at the loop-tail locus: morphology, histology, and genetic mapping. Genomics, 72(3): 331–337
https://doi.org/10.1006/geno.2000.6493
pmid: 11401449
|
31 |
Kibar Z, Vogan K J, Groulx N, Justice M J, Underhill D A, Gros P (2001b). Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet, 28(3): 251–255
https://doi.org/10.1038/90081
pmid: 11431695
|
32 |
Kim G H, Her J H, Han J K (2008). Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol, 182(6): 1073–1082
https://doi.org/10.1083/jcb.200710188
pmid: 18809723
|
33 |
Klein T J, Mlodzik M (2005). Planar cell polarization: an emerging model points in the right direction. Annu Rev Cell Dev Biol, 21(1): 155–176
https://doi.org/10.1146/annurev.cellbio.21.012704.132806
pmid: 16212491
|
34 |
Lee I, Doray B, Govero J, Kornfeld S (2008). Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP. J Cell Biol, 180(3): 467–472
https://doi.org/10.1083/jcb.200709037
pmid: 18250197
|
35 |
Lee J H, Fischer J A (2012). Drosophila Tel2 is expressed as a translational fusion with EpsinR and is a regulator of wingless signaling. PLoS One, 7(9): e46357
https://doi.org/10.1371/journal.pone.0046357
pmid: 23029494
|
36 |
Lee J H, Overstreet E, Fitch E, Fleenor S, Fischer J A (2009). Drosophila liquid facets-Related encodes Golgi epsin and is an essential gene required for cell proliferation, growth, and patterning. Dev Biol, 331(1): 1–13
https://doi.org/10.1016/j.ydbio.2009.03.029
pmid: 19376106
|
37 |
Lee M C, Miller E A, Goldberg J, Orci L, Schekman R (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol, 20(1): 87–123
https://doi.org/10.1146/annurev.cellbio.20.010403.105307
pmid: 15473836
|
38 |
Lu B, Usui T, Uemura T, Jan L, Jan Y N (1999). Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr Biol, 9(21): 1247–1250
https://doi.org/10.1016/S0960-9822(99)80505-3
pmid: 10556092
|
39 |
Ma T, Li B, Wang R, Lau P K, Huang Y, Jiang L, Schekman R, Guo Y (2018). A mechanism for differential sorting of the planar cell polarity proteins Frizzled6 and Vangl2 at the trans-Golgi network. J Biol Chem, 293(22): 8410–8427
https://doi.org/10.1074/jbc.RA118.001906
pmid: 29666182
|
40 |
Matakatsu H, Blair S S (2004). Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development, 131(15): 3785–3794
https://doi.org/10.1242/dev.01254
pmid: 15240556
|
41 |
Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, Ginty D D (2010). Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol, 12:41–46; sup pp 41–48.
|
42 |
Mottola G, Classen A K, González-Gaitán M, Eaton S, Zerial M (2010). A novel function for the Rab5 effector Rabenosyn-5 in planar cell polarity. Development, 137(14): 2353–2364
https://doi.org/10.1242/dev.048413
pmid: 20534670
|
43 |
Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S (2010). Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J, 29(13): 2114–2125
https://doi.org/10.1038/emboj.2010.100
pmid: 20495530
|
44 |
Murdoch J N, Doudney K, Paternotte C, Copp A J, Stanier P (2001). Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet, 10(22): 2593–2601
https://doi.org/10.1093/hmg/10.22.2593
pmid: 11709546
|
45 |
Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, Sakuma R, Luga V, Roncari L, Attisano L, Wrana J L (2009). Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell, 137(2): 295–307
https://doi.org/10.1016/j.cell.2009.02.025
pmid: 19379695
|
46 |
Olofsson J, Sharp K A, Matis M, Cho B, Axelrod J D (2014). Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development, 141(14): 2866–2874
https://doi.org/10.1242/dev.105932
pmid: 25005476
|
47 |
Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis E M (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature, 397(6721): 707–710
https://doi.org/10.1038/17820
pmid: 10067895
|
48 |
Ren X, Farías G G, Canagarajah B J, Bonifacino J S, Hurley J H (2013). Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell, 152(4): 755–767
https://doi.org/10.1016/j.cell.2012.12.042
pmid: 23415225
|
49 |
Sepich D S, Usmani M, Pawlicki S, Solnica-Krezel L (2011). Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements. Development, 138(3): 543–552
https://doi.org/10.1242/dev.053959
pmid: 21205798
|
50 |
Shi D, Usami F, Komatsu K, Oka S, Abe T, Uemura T, Fujimori T (2016). Dynamics of planar cell polarity protein Vangl2 in the mouse oviduct epithelium. Mech Dev, 141: 78–89
https://doi.org/10.1016/j.mod.2016.05.002
pmid: 27155041
|
51 |
Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T (2006). Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell, 10(2): 209–222
https://doi.org/10.1016/j.devcel.2005.11.016
pmid: 16459300
|
52 |
Shrestha R, Little K A, Tamayo J V, Li W, Perlman D H, Devenport D (2015). Mitotic Control of Planar Cell Polarity by Polo-like Kinase 1. Dev Cell, 33(5): 522–534
https://doi.org/10.1016/j.devcel.2015.03.024
pmid: 26004507
|
53 |
Strutt D, Warrington S J (2008). Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development, 135(18): 3103–3111
https://doi.org/10.1242/dev.025205
pmid: 18701542
|
54 |
Strutt D I (2001). Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol Cell, 7(2): 367–375
https://doi.org/10.1016/S1097-2765(01)00184-8
pmid: 11239465
|
55 |
Strutt H, Searle E, Thomas-Macarthur V, Brookfield R, Strutt D (2013a). A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development, 140(8): 1693–1702
https://doi.org/10.1242/dev.089656
pmid: 23487316
|
56 |
Strutt H, Strutt D (2008). Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr Biol, 18(20): 1555–1564
https://doi.org/10.1016/j.cub.2008.08.063
pmid: 18804371
|
57 |
Strutt H, Thomas-MacArthur V, Strutt D (2013b). Strabismus promotes recruitment and degradation of farnesylated prickle in Drosophila melanogaster planar polarity specification. PLoS Genet, 9(7): e1003654
https://doi.org/10.1371/journal.pgen.1003654
pmid: 23874239
|
58 |
Strutt H, Warrington S J, Strutt D (2011). Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Dev Cell, 20(4): 511–525
https://doi.org/10.1016/j.devcel.2011.03.018
pmid: 21497763
|
59 |
Tauriello D V, Haegebarth A, Kuper I, Edelmann M J, Henraat M, Canninga-van Dijk M R, Kessler B M, Clevers H, Maurice M M (2010). Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell, 37(5): 607–619
https://doi.org/10.1016/j.molcel.2010.01.035
pmid: 20227366
|
60 |
Tree D R, Shulman J M, Rousset R, Scott M P, Gubb D, Axelrod J D (2002). Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell, 109(3): 371–381
https://doi.org/10.1016/S0092-8674(02)00715-8
pmid: 12015986
|
61 |
Vladar E K, Bayly R D, Sangoram A M, Scott M P, Axelrod J D (2012). Microtubules enable the planar cell polarity of airway cilia. Curr Biol, 22(23): 2203–2212
https://doi.org/10.1016/j.cub.2012.09.046
pmid: 23122850
|
62 |
Wootton R J (1992). Functional morphology of insect wings. Annu Rev Entomol, 37(1): 113–140
https://doi.org/10.1146/annurev.en.37.010192.000553
|
63 |
Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S (2005). Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell, 120(2): 223–235
https://doi.org/10.1016/j.cell.2004.11.051
pmid: 15680328
|
64 |
Yu A, Rual J F, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T (2007). Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev Cell, 12(1): 129–141
https://doi.org/10.1016/j.devcel.2006.10.015
pmid: 17199046
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|