Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers of Energy and Power Engineering in China  2009, Vol. 3 Issue (2): 141-151   https://doi.org/10.1007/s11708-009-0020-2
  RESEARCH ARTICLE 本期目录
Thin-liquid-film evaporation at contact line
Thin-liquid-film evaporation at contact line
Hao WANG(), Zhenai PAN, Zhao CHEN
Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
 全文: PDF(253 KB)   HTML
Abstract

When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

Key wordsmeniscus    thin film    contact line    disjoining pressure    evaporation
收稿日期: 2008-09-12      出版日期: 2009-06-05
Corresponding Author(s): WANG Hao,Email:hwang@coe.pku.edu.cn   
 引用本文:   
. Thin-liquid-film evaporation at contact line[J]. Frontiers of Energy and Power Engineering in China, 2009, 3(2): 141-151.
Hao WANG, Zhenai PAN, Zhao CHEN. Thin-liquid-film evaporation at contact line. Front Energ Power Eng Chin, 2009, 3(2): 141-151.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0020-2
https://academic.hep.com.cn/fie/CN/Y2009/V3/I2/141
1 Park K, Noh K J, Lee K S. Transport phenomena in the thin-film region of a micro-channel. International Journal of Heat and Mass Transfer , 2003, 46(13): 2381-2388
doi: 10.1016/S0017-9310(02)00541-0
2 Hallinan K P, Chebaro H C, Kim S J, . Evaporation from an extended meniscus for nonisothermal interfacial conditions. Journal of Thermophysics and Heat. Transfer , 1994, 8(4): 709-716
doi: 10.2514/3.602
3 Wang Hao, Garimella S V, Murthy J Y. Characteristics of an evaporating thin film in a microchannel. International Journal of Heat and Mass Transfer , 2007, 50(1,2): 163-172
4 Stephan K. Influence of dispersion forces on phase equilibria between thin liquid films and their vapour. International Journal of Heat and Mass Transfer , 2002, 45(24): 4715-4725
doi: 10.1016/S0017-9310(01)00250-2
5 Stephan P C, Busse C A. Analysis of the heat-transfer coefficient of grooved heat pipe evaporator walls. International Journal of Heat and Mass Transfer , 1992, 35(2): 383-391
doi: 10.1016/0017-9310(92)90276-X
6 Carey V P. Liquid-Vapor Phase-Change Phenomena. New York: Hemisphere Publishing House, 1992
7 Moore F D, Mesler R B. The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AICHE Journal , 1961, 7(4): 620-624
doi: 10.1002/aic.690070418
8 Pasamehmetoglu K O, Chappidi P R, Unal C, . Saturated pool nucleate boiling mechanisms at high heat fluxes. International Journal of Heat and Mass Transfer , 1993, 36(15): 3859-3868
doi: 10.1016/0017-9310(93)90066-F
9 Lay J H, Dhir V K. Shape of a vapor stem during nucleate boiling of saturated liquids. Trans ASME Journal of Heat Transfer , 1995, 117(2): 394-401
doi: 10.1115/1.2822535
10 Stephan P, Hammer J. A new model for nucleate boiling heat transfer. Heat Mass Transfer , 1994, 30(2): 119-125
11 Derjaguin B V. Modern state of the investigation of long-range surface forces. Langmuir , 1987, 3(5): 601-606
doi: 10.1021/la00077a001
12 Derjaguin B V, Zorin Z M. Optical study of the adsorption and surface condensation of vapours in the vicinity of saturation on a smooth surface. Proceedings of the 2nd International Congress of Surface Activity, London , 1957, 145-152
13 Derjaguin B V. Definition of the concept of the magnitude of the disjoining pressure and its role in the statics and kinetics of thin liquid layers. Colloid Journal of the USSR , 1955, 17(2): 191-197
14 Derjaguin B V, Starov V M, Churaev N V. Profile of the transition zone between a wetting film and the meniscus of the bulk liquid. Colloid Journal of the USSR , 1976, 38(5): 786-789
15 Israelachvili J. Intermolecular Forces. Washington: Academic Press, 1992
16 Hamaker H C. The london-van der waals interaction between spherical particles. Physica IV , 1937, 4(10): 1058-1072
17 Wee S K. Microscale observables for heat and mass transport. Dissertation for the Doctoral Degree . College Station: Texas A&M University, 2004
18 Wayner P C, Kao Y K, Lacroix L V. Interline heat-transfer coefficient of an evaporating wetting film. International Journal of Heat and Mass Transfer , 1976, 19(5): 487-492
doi: 10.1016/0017-9310(76)90161-7
19 Schonberg J A, Wayner Jr P C. Analytical solution for the integral contact line evaporative heat sink. Journal of Thermophysics and Heat Transfer , 1992, 6(1): 128-134
doi: 10.2514/3.327
20 Schonberg J A, Dasgupta S, Wayner P C. An augmented young-laplace model of an evaporating meniscus in a microchannel with high heat-flux. Experimental Thermal and Fluid Science , 1995, 10(2): 163-170
doi: 10.1016/0894-1777(94)00085-M
21 Panchamgam S S, Gokhale S J, Plawsky J L, . Experimental determination of the effect of disjoining pressure on shear in the contact line region of a moving evaporating thin film. ASME Journal of Heat Transfer , 2005, 127(3): 231-243
doi: 10.1115/1.1857947
22 DasGupta S, Plawsky J L, Wayner Jr P C. Interfacial force field characterization in a constrained vapor bubble thermosyphon. AIChE Journal , 1995, 41(9): 2140-2149
doi: 10.1002/aic.690410913
23 Potash M, Wayner P C. Evaporation from a 2-dimensional extended meniscus. International Journal of Heat and Mass Transfer , 1972, 15(10): 1851-1863
doi: 10.1016/0017-9310(72)90058-0
24 Holm F W, Goplen S P. Heat-transfer in the meniscus thin-film transition region. ASME Journal of Heat Transfer , 1979, 101(3): 543-547
25 Deryagin B V, Nerpin S V, Churayev N V. Effect of film heat transfer upon evaporation of liquids from capillaries. RILEM Bull , 1965, 29(1): 93-98
26 Wang Hao, Garimella S V, Murthy J Y. An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. International Journal of Heat and Mass Transfer , 2008, 51(25,26): 6317-6322
27 Dasgupta S, Schonberg J A, Wayner P C. Investigation of an evaporating extended meniscus based on the augmented young-laplace equation. ASME Journal of Heat Transfer , 1993, 115(1): 201-208
doi: 10.1115/1.2910649
28 Chakraborty C, Som S K. Heat transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel. International Journal of Heat and Mass Transfer , 2005, 48(13): 2801-2805
doi: 10.1016/j.ijheatmasstransfer.2005.01.030
29 Ma H B, Peterson G P. Temperature variation and heat transfer in triangular grooves with an evaporating film. Journal of Thermophysics Heat Transfer , 1997, 11(1): 90-97
doi: 10.2514/2.6205
30 Schrage R W. A Theoretical Study of Interface Mass Transfer. New York: Columbia University Press, 1953
31 Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer , 2001, 44(1): 39-53
doi: 10.1016/S0017-9310(00)00086-7
32 Paul B. Complication of evaporation coefficients. ARS Journal , 1962, 32(9): 1321-1328
33 Xu X, Carey V P. Film evaporation from a micro-grooved surface-an approximate heat transfer model and its comparison with experimental data. Journal of Thermophysics Heat Transfer , 1990, 4(4): 512-520
doi: 10.2514/3.215
34 Morris S J S. The evaporating meniscus in a channel. Journal of Fluid Mechanics , 2003, 494: 2801-2805
doi: 10.1017/S0022112003006153
35 Wee S K,Kihm K D, Pratt D M, . Microscale heat and mass transport of evaporating thin film of binary mixture. Journal of Thermophysics Heat Transfer , 2006, 20(2): 320-326
doi: 10.2514/1.15784
36 Pearson J R A. On convection cells induced by surface tension. Journal of Fluid Mechanics , 1958, 4: 489-500
doi: 10.1017/S0022112058000616
37 Sternling C V, Scriven L E. Interfacial turbulence: Hydrodynamic instability and the marangoni effect. AIChE Journal , 1959, 5: 514-523
doi: 10.1002/aic.690050421
38 Smith M K, Davis S H. Instabilities of dynamic thermocapillary liquid layers. Part 1: Convective instabilities. Journal of Fluid Mechanics , 1983, 132: 119-144
doi: 10.1017/S0022112083001512
39 Smith M K, Davis S H. Instabilities of dynamic thermocapillary liquid layers. Part 2: Surface-wave instabilities. Journal of Fluid Mechanics , 1983, 132: 145-162
doi: 10.1017/S0022112083001524
40 Goussis D A, Kelly R E. On the thermocapillary instabilities in a liquid layer heated from below. International Journal of Heat and Mass Transfer , 1990, 33(10): 2237-2245
doi: 10.1016/0017-9310(90)90123-C
41 Miladinova S, Slavtchev S, Lebon G, . Long-wave instabilities of non-uniformly heated falling films. Journal of Fluid Mechanics , 2002, 453: 153-175
doi: 10.1017/S0022112001006814
42 Joo S,Davis S, Bankoff S. Long-wave instabilities of heated falling films: Two-dimensional theory of uniform layers. Journal of Fluid Mechanics , 1991, 230: 117-146
doi: 10.1017/S0022112091000733
43 Kabov O A, Marchuk I V, Muzykantov A V, . Regular structures in locally heated falling liquid films. In: Proc. 2nd Intl Symp on Two-phases Flow Modelling and Experimentation, Pisa , 1999, 5: 1225-1233
44 Kabov O A, Marchuk I V, Chupin V M. Thermal imaging study of the liquid film flowing on a vertical surface with local heat source. Russian Journal of Engineering Thermophysics , 1996, 6: 105-138
45 Kabov O. Formation of regular structures in a falling liquid film upon local heating. Thermophys Aeromech , 1998, 5: 547-551
46 Scheid B, Kabov O, Minetti C, . Measurement of free surface deformation by reflectance-schlieren method. 3rd European Thermal Sciences Conference, Heidelberg , 2000, 651-657
47 Kalliadasis S, Kiyashko A, Demekhin E A. Marangoni instability of a thin liquid film heated from below by a local heat source. Journal of Fluid Mechanics , 2003, 475: 377-408
doi: 10.1017/S0022112002003014
48 Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films. Rev Mod Phys , 1997. 69(3): 931-980
doi: 10.1103/RevModPhys.69.931
49 Oron A, Bankoff S G. Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures. Journal of Colloid and Interface Science , 1999, 218(1): 152-166
doi: 10.1006/jcis.1999.6390
50 Münch A, Wagner B. Contact-line instability of dewetting thin films. Physics D: Nonlinear Phenomena , 2005, 209(1-4): 178-190
doi: 10.1016/j.physd.2005.06.027
51 Lyushnin A V, Golovin A A, Pismen L M. Fingering instability of thin evaporating liquid films. Phys Rev E , 2002, 65(2): 021602
doi: 10.1103/PhysRevE.65.021602
52 Fujita T, Ueda T. Heat transfer to falling liquid films and film breakdown-I: Subcooled liquid films. International Journal of Heat and Mass Transfer , 1978, 21(2): 97-108
doi: 10.1016/0017-9310(78)90212-0
53 Hoke J B C, Chen J C. Thermocapillary breakdown of subcooled falling liquid films. Ind Eng Chem Res , 1992, 31: 688-694
doi: 10.1021/ie00003a006
54 Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with fc-72. International Journal of Heat and Mass Transfer , 2006, 49(15,16): 2610-2618
55 Yang T H, Pan C. Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. International Journal of Heat and Mass Transfer , 2005, 48(17): 3516-3526
doi: 10.1016/j.ijheatmasstransfer.2005.03.015
56 Kikugawa G,Takagi S, Matsumoto Y. A molecular dynamics study on liquid-vapor interface adsorbed by impurities. Computers & Fluids , 2007, 36: 69-76
doi: 10.1016/j.compfluid.2005.07.007
57 Wolde P R T, Frenkel D. Computer simulation study of gas-liquid nucleation in a lennard-jones system. J Chem Phys , 1998, 109: 9901-9918
doi: 10.1063/1.477658
58 Wang Jinzhao, Chen Min, Guo Zengyuan. A two-dimensional molecular dynamics simulation of liquid-vapor nucleation. Chinese Sci Bul , 2003, 48(7): 623-626
doi: 10.1360/03tb9132
59 Maruyama S, Kimura T. A molecular dynamics simulation of a bubble nucleation on solid surface. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference , 1999
60 Yi Pan, Poulikakos D, Walther J, . Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. International Journal of Heat and Mass Transfer , 2002, 45(10): 2087-2100
doi: 10.1016/S0017-9310(01)00310-6
61 Freund J B. The atomic detail of an evaporating meniscus. Phys Fluid , 2005, 17(2): 022104
doi: 10.1063/1.1843871
62 Jawurek H H. Simultaneous determination of microlayer geometry and bubble growth in nucleate boiling. International Journal of Heat and Mass Transfer , 1969, 12(8): 843-848
doi: 10.1016/0017-9310(69)90151-3
63 Voutsinos C M, Judd R L. Laser interferometetric investigation of the microlayer evaporation phenomena. Journal of Heat Transfer , 1975, 97: 88-93
64 Chen J D, Wada N. Edge profiles and dynamic contact angles of a spreading drop. Journal of Colloid and Interface Science , 1992, 148: 207-222
doi: 10.1016/0021-9797(92)90129-A
65 DasGupta S, Plawsky J L, Wayner Jr P C . Interfacial force field characterization in a constrained vapor bubble thermosyphon. AIChE Journal , 1995, 41: 2140-2149
doi: 10.1002/aic.690410913
66 Renk F J,Wayner Jr P C. An evaporating ethanol menicus, part I: Experimental studies. Journal of Heat Transfer , 1979, 101: 55-58
67 Zheng L, Wang Y X, Plawsky J L, . Accuracy of measurements of curvature and apparent contact angle in a constrained vapor bubble heat exchanger. International Journal of Heat and Mass Transfer , 2002, 45(10): 2021-2030
doi: 10.1016/S0017-9310(01)00306-4
68 Plawsky J L, Panchamgam S S, Gokhale S J, . A study of the oscillating corner meniscus in a vertical constrained vapor bubble system. Superlattice Microst , 2004, 35(3-6): 559-572
doi: 10.1016/j.spmi.2003.11.010
69 Panchamgam S S, Plawsky J L, Wayner P C. Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture. Trans ASME Journal of Heat Transfer , 2006, 128(12): 1266-1275
doi: 10.1115/1.2349506
70 Gokhale S J, Plawsky J L, Wayner P C, . Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile. Physics of Fluids , 2004, 16(6): 1942-1955
doi: 10.1063/1.1718991
71 Argade R, Ghosh S, De S, . Experimental investigation of evaporation and condensation in the contact line region of a thin liquid film experiencing small thermal perturbations. Langmuir , 2007, 23(3): 1234-1241
doi: 10.1021/la062098m
72 Deng L, Plawsky J L, Wayner P C, . Stability and oscillations in an evaporating corner meniscus. Trans ASME Journal of Heat Transfer , 2004, 126(2): 169-178
doi: 10.1115/1.1652046
73 Churaev N V, Esipova N E, Hill R M, .The superspreading effect of trisiloxane surfactant solutions. Langmuir , 2001, 17(5): 1338-1348
doi: 10.1021/la000789r
74 Liu A H, Wayner P C, Plawsky J L. Image scanning ellipsometry for measuring nonuniform film thickness profiles. Applied Optics , 1994, 33(7): 1223-1229
75 Liu A H, Wayner P C, Plawsky J L. Image scanning ellipsometry for measuring the transient, film thickness profiles of draining liquids. Physics of Fluids , 1994, 6(6): 1963-1971
doi: 10.1063/1.868203
76 Liu A H, Wayner P C, Plawsky J L. Drainage of a partially wetting film: Dodecane on silicon. Ind Eng Chem Res , 1996, 35(9): 2955-2963
doi: 10.1021/ie950720s
77 Hohmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Science , 2002, 26(2-4): 157-162
doi: 10.1016/S0894-1777(02)00122-X
78 Buffone C, Sefiane K. Temperature measurement near the triple line during phase change using thermochromic liquid crystal thermography. Exp Fluids , 2005, 39: 99-110
doi: 10.1007/s00348-005-0986-4
79 Buffone C,Sefiane K, Christy J R E. Experimental investigation of the hydrodynamics and stability of an evaporating wetting film placed in a temperature gradient. Applied Thermal Engineering , 2004, 24(8,9): 1157-1170
80 Buffone C, Sefiane K. Ir measurements of interfacial temperature during phase change in a confined environment. Experimental Thermal and Fluid Science , 2004, 29(1): 65-74
doi: 10.1016/j.expthermflusci.2004.02.004
81 Buffone C, Sefiane K. Controlling evaporative thermocapillary convection using external heating: An experimental investigation. Experimental Thermal and Fluid Science , 2008, 32(6): 1287-1300
doi: 10.1016/j.expthermflusci.2008.02.009
82 Buffone C, Sefiane K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. International Journal of Multiphase Flow , 2004, 30(9): 1071-1091
doi: 10.1016/j.ijmultiphaseflow.2004.05.010
83 Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Physics of Fluids , 2005, 17(5): 052104
doi: 10.1063/1.1901688
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed