When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.
Corresponding Author(s):
WANG Hao,Email:hwang@coe.pku.edu.cn
引用本文:
. Thin-liquid-film evaporation at contact line[J]. Frontiers of Energy and Power Engineering in China, 2009, 3(2): 141-151.
Hao WANG, Zhenai PAN, Zhao CHEN. Thin-liquid-film evaporation at contact line. Front Energ Power Eng Chin, 2009, 3(2): 141-151.
Park K, Noh K J, Lee K S. Transport phenomena in the thin-film region of a micro-channel. International Journal of Heat and Mass Transfer , 2003, 46(13): 2381-2388 doi: 10.1016/S0017-9310(02)00541-0
2
Hallinan K P, Chebaro H C, Kim S J, . Evaporation from an extended meniscus for nonisothermal interfacial conditions. Journal of Thermophysics and Heat. Transfer , 1994, 8(4): 709-716 doi: 10.2514/3.602
3
Wang Hao, Garimella S V, Murthy J Y. Characteristics of an evaporating thin film in a microchannel. International Journal of Heat and Mass Transfer , 2007, 50(1,2): 163-172
4
Stephan K. Influence of dispersion forces on phase equilibria between thin liquid films and their vapour. International Journal of Heat and Mass Transfer , 2002, 45(24): 4715-4725 doi: 10.1016/S0017-9310(01)00250-2
5
Stephan P C, Busse C A. Analysis of the heat-transfer coefficient of grooved heat pipe evaporator walls. International Journal of Heat and Mass Transfer , 1992, 35(2): 383-391 doi: 10.1016/0017-9310(92)90276-X
6
Carey V P. Liquid-Vapor Phase-Change Phenomena. New York: Hemisphere Publishing House, 1992
7
Moore F D, Mesler R B. The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AICHE Journal , 1961, 7(4): 620-624 doi: 10.1002/aic.690070418
8
Pasamehmetoglu K O, Chappidi P R, Unal C, . Saturated pool nucleate boiling mechanisms at high heat fluxes. International Journal of Heat and Mass Transfer , 1993, 36(15): 3859-3868 doi: 10.1016/0017-9310(93)90066-F
9
Lay J H, Dhir V K. Shape of a vapor stem during nucleate boiling of saturated liquids. Trans ASME Journal of Heat Transfer , 1995, 117(2): 394-401 doi: 10.1115/1.2822535
10
Stephan P, Hammer J. A new model for nucleate boiling heat transfer. Heat Mass Transfer , 1994, 30(2): 119-125
11
Derjaguin B V. Modern state of the investigation of long-range surface forces. Langmuir , 1987, 3(5): 601-606 doi: 10.1021/la00077a001
12
Derjaguin B V, Zorin Z M. Optical study of the adsorption and surface condensation of vapours in the vicinity of saturation on a smooth surface. Proceedings of the 2nd International Congress of Surface Activity, London , 1957, 145-152
13
Derjaguin B V. Definition of the concept of the magnitude of the disjoining pressure and its role in the statics and kinetics of thin liquid layers. Colloid Journal of the USSR , 1955, 17(2): 191-197
14
Derjaguin B V, Starov V M, Churaev N V. Profile of the transition zone between a wetting film and the meniscus of the bulk liquid. Colloid Journal of the USSR , 1976, 38(5): 786-789
15
Israelachvili J. Intermolecular Forces. Washington: Academic Press, 1992
16
Hamaker H C. The london-van der waals interaction between spherical particles. Physica IV , 1937, 4(10): 1058-1072
17
Wee S K. Microscale observables for heat and mass transport. Dissertation for the Doctoral Degree . College Station: Texas A&M University, 2004
18
Wayner P C, Kao Y K, Lacroix L V. Interline heat-transfer coefficient of an evaporating wetting film. International Journal of Heat and Mass Transfer , 1976, 19(5): 487-492 doi: 10.1016/0017-9310(76)90161-7
19
Schonberg J A, Wayner Jr P C. Analytical solution for the integral contact line evaporative heat sink. Journal of Thermophysics and Heat Transfer , 1992, 6(1): 128-134 doi: 10.2514/3.327
20
Schonberg J A, Dasgupta S, Wayner P C. An augmented young-laplace model of an evaporating meniscus in a microchannel with high heat-flux. Experimental Thermal and Fluid Science , 1995, 10(2): 163-170 doi: 10.1016/0894-1777(94)00085-M
21
Panchamgam S S, Gokhale S J, Plawsky J L, . Experimental determination of the effect of disjoining pressure on shear in the contact line region of a moving evaporating thin film. ASME Journal of Heat Transfer , 2005, 127(3): 231-243 doi: 10.1115/1.1857947
22
DasGupta S, Plawsky J L, Wayner Jr P C. Interfacial force field characterization in a constrained vapor bubble thermosyphon. AIChE Journal , 1995, 41(9): 2140-2149 doi: 10.1002/aic.690410913
23
Potash M, Wayner P C. Evaporation from a 2-dimensional extended meniscus. International Journal of Heat and Mass Transfer , 1972, 15(10): 1851-1863 doi: 10.1016/0017-9310(72)90058-0
24
Holm F W, Goplen S P. Heat-transfer in the meniscus thin-film transition region. ASME Journal of Heat Transfer , 1979, 101(3): 543-547
25
Deryagin B V, Nerpin S V, Churayev N V. Effect of film heat transfer upon evaporation of liquids from capillaries. RILEM Bull , 1965, 29(1): 93-98
26
Wang Hao, Garimella S V, Murthy J Y. An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. International Journal of Heat and Mass Transfer , 2008, 51(25,26): 6317-6322
27
Dasgupta S, Schonberg J A, Wayner P C. Investigation of an evaporating extended meniscus based on the augmented young-laplace equation. ASME Journal of Heat Transfer , 1993, 115(1): 201-208 doi: 10.1115/1.2910649
28
Chakraborty C, Som S K. Heat transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel. International Journal of Heat and Mass Transfer , 2005, 48(13): 2801-2805 doi: 10.1016/j.ijheatmasstransfer.2005.01.030
29
Ma H B, Peterson G P. Temperature variation and heat transfer in triangular grooves with an evaporating film. Journal of Thermophysics Heat Transfer , 1997, 11(1): 90-97 doi: 10.2514/2.6205
30
Schrage R W. A Theoretical Study of Interface Mass Transfer. New York: Columbia University Press, 1953
31
Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer , 2001, 44(1): 39-53 doi: 10.1016/S0017-9310(00)00086-7
32
Paul B. Complication of evaporation coefficients. ARS Journal , 1962, 32(9): 1321-1328
33
Xu X, Carey V P. Film evaporation from a micro-grooved surface-an approximate heat transfer model and its comparison with experimental data. Journal of Thermophysics Heat Transfer , 1990, 4(4): 512-520 doi: 10.2514/3.215
34
Morris S J S. The evaporating meniscus in a channel. Journal of Fluid Mechanics , 2003, 494: 2801-2805 doi: 10.1017/S0022112003006153
35
Wee S K,Kihm K D, Pratt D M, . Microscale heat and mass transport of evaporating thin film of binary mixture. Journal of Thermophysics Heat Transfer , 2006, 20(2): 320-326 doi: 10.2514/1.15784
36
Pearson J R A. On convection cells induced by surface tension. Journal of Fluid Mechanics , 1958, 4: 489-500 doi: 10.1017/S0022112058000616
37
Sternling C V, Scriven L E. Interfacial turbulence: Hydrodynamic instability and the marangoni effect. AIChE Journal , 1959, 5: 514-523 doi: 10.1002/aic.690050421
38
Smith M K, Davis S H. Instabilities of dynamic thermocapillary liquid layers. Part 1: Convective instabilities. Journal of Fluid Mechanics , 1983, 132: 119-144 doi: 10.1017/S0022112083001512
39
Smith M K, Davis S H. Instabilities of dynamic thermocapillary liquid layers. Part 2: Surface-wave instabilities. Journal of Fluid Mechanics , 1983, 132: 145-162 doi: 10.1017/S0022112083001524
40
Goussis D A, Kelly R E. On the thermocapillary instabilities in a liquid layer heated from below. International Journal of Heat and Mass Transfer , 1990, 33(10): 2237-2245 doi: 10.1016/0017-9310(90)90123-C
Joo S,Davis S, Bankoff S. Long-wave instabilities of heated falling films: Two-dimensional theory of uniform layers. Journal of Fluid Mechanics , 1991, 230: 117-146 doi: 10.1017/S0022112091000733
43
Kabov O A, Marchuk I V, Muzykantov A V, . Regular structures in locally heated falling liquid films. In: Proc. 2nd Intl Symp on Two-phases Flow Modelling and Experimentation, Pisa , 1999, 5: 1225-1233
44
Kabov O A, Marchuk I V, Chupin V M. Thermal imaging study of the liquid film flowing on a vertical surface with local heat source. Russian Journal of Engineering Thermophysics , 1996, 6: 105-138
45
Kabov O. Formation of regular structures in a falling liquid film upon local heating. Thermophys Aeromech , 1998, 5: 547-551
46
Scheid B, Kabov O, Minetti C, . Measurement of free surface deformation by reflectance-schlieren method. 3rd European Thermal Sciences Conference, Heidelberg , 2000, 651-657
47
Kalliadasis S, Kiyashko A, Demekhin E A. Marangoni instability of a thin liquid film heated from below by a local heat source. Journal of Fluid Mechanics , 2003, 475: 377-408 doi: 10.1017/S0022112002003014
48
Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films. Rev Mod Phys , 1997. 69(3): 931-980 doi: 10.1103/RevModPhys.69.931
49
Oron A, Bankoff S G. Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures. Journal of Colloid and Interface Science , 1999, 218(1): 152-166 doi: 10.1006/jcis.1999.6390
50
Münch A, Wagner B. Contact-line instability of dewetting thin films. Physics D: Nonlinear Phenomena , 2005, 209(1-4): 178-190 doi: 10.1016/j.physd.2005.06.027
51
Lyushnin A V, Golovin A A, Pismen L M. Fingering instability of thin evaporating liquid films. Phys Rev E , 2002, 65(2): 021602 doi: 10.1103/PhysRevE.65.021602
52
Fujita T, Ueda T. Heat transfer to falling liquid films and film breakdown-I: Subcooled liquid films. International Journal of Heat and Mass Transfer , 1978, 21(2): 97-108 doi: 10.1016/0017-9310(78)90212-0
53
Hoke J B C, Chen J C. Thermocapillary breakdown of subcooled falling liquid films. Ind Eng Chem Res , 1992, 31: 688-694 doi: 10.1021/ie00003a006
54
Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with fc-72. International Journal of Heat and Mass Transfer , 2006, 49(15,16): 2610-2618
55
Yang T H, Pan C. Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. International Journal of Heat and Mass Transfer , 2005, 48(17): 3516-3526 doi: 10.1016/j.ijheatmasstransfer.2005.03.015
56
Kikugawa G,Takagi S, Matsumoto Y. A molecular dynamics study on liquid-vapor interface adsorbed by impurities. Computers & Fluids , 2007, 36: 69-76 doi: 10.1016/j.compfluid.2005.07.007
57
Wolde P R T, Frenkel D. Computer simulation study of gas-liquid nucleation in a lennard-jones system. J Chem Phys , 1998, 109: 9901-9918 doi: 10.1063/1.477658
58
Wang Jinzhao, Chen Min, Guo Zengyuan. A two-dimensional molecular dynamics simulation of liquid-vapor nucleation. Chinese Sci Bul , 2003, 48(7): 623-626 doi: 10.1360/03tb9132
59
Maruyama S, Kimura T. A molecular dynamics simulation of a bubble nucleation on solid surface. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference , 1999
60
Yi Pan, Poulikakos D, Walther J, . Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. International Journal of Heat and Mass Transfer , 2002, 45(10): 2087-2100 doi: 10.1016/S0017-9310(01)00310-6
61
Freund J B. The atomic detail of an evaporating meniscus. Phys Fluid , 2005, 17(2): 022104 doi: 10.1063/1.1843871
62
Jawurek H H. Simultaneous determination of microlayer geometry and bubble growth in nucleate boiling. International Journal of Heat and Mass Transfer , 1969, 12(8): 843-848 doi: 10.1016/0017-9310(69)90151-3
63
Voutsinos C M, Judd R L. Laser interferometetric investigation of the microlayer evaporation phenomena. Journal of Heat Transfer , 1975, 97: 88-93
64
Chen J D, Wada N. Edge profiles and dynamic contact angles of a spreading drop. Journal of Colloid and Interface Science , 1992, 148: 207-222 doi: 10.1016/0021-9797(92)90129-A
65
DasGupta S, Plawsky J L, Wayner Jr P C . Interfacial force field characterization in a constrained vapor bubble thermosyphon. AIChE Journal , 1995, 41: 2140-2149 doi: 10.1002/aic.690410913
66
Renk F J,Wayner Jr P C. An evaporating ethanol menicus, part I: Experimental studies. Journal of Heat Transfer , 1979, 101: 55-58
67
Zheng L, Wang Y X, Plawsky J L, . Accuracy of measurements of curvature and apparent contact angle in a constrained vapor bubble heat exchanger. International Journal of Heat and Mass Transfer , 2002, 45(10): 2021-2030 doi: 10.1016/S0017-9310(01)00306-4
68
Plawsky J L, Panchamgam S S, Gokhale S J, . A study of the oscillating corner meniscus in a vertical constrained vapor bubble system. Superlattice Microst , 2004, 35(3-6): 559-572 doi: 10.1016/j.spmi.2003.11.010
69
Panchamgam S S, Plawsky J L, Wayner P C. Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture. Trans ASME Journal of Heat Transfer , 2006, 128(12): 1266-1275 doi: 10.1115/1.2349506
70
Gokhale S J, Plawsky J L, Wayner P C, . Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile. Physics of Fluids , 2004, 16(6): 1942-1955 doi: 10.1063/1.1718991
71
Argade R, Ghosh S, De S, . Experimental investigation of evaporation and condensation in the contact line region of a thin liquid film experiencing small thermal perturbations. Langmuir , 2007, 23(3): 1234-1241 doi: 10.1021/la062098m
72
Deng L, Plawsky J L, Wayner P C, . Stability and oscillations in an evaporating corner meniscus. Trans ASME Journal of Heat Transfer , 2004, 126(2): 169-178 doi: 10.1115/1.1652046
73
Churaev N V, Esipova N E, Hill R M, .The superspreading effect of trisiloxane surfactant solutions. Langmuir , 2001, 17(5): 1338-1348 doi: 10.1021/la000789r
74
Liu A H, Wayner P C, Plawsky J L. Image scanning ellipsometry for measuring nonuniform film thickness profiles. Applied Optics , 1994, 33(7): 1223-1229
75
Liu A H, Wayner P C, Plawsky J L. Image scanning ellipsometry for measuring the transient, film thickness profiles of draining liquids. Physics of Fluids , 1994, 6(6): 1963-1971 doi: 10.1063/1.868203
76
Liu A H, Wayner P C, Plawsky J L. Drainage of a partially wetting film: Dodecane on silicon. Ind Eng Chem Res , 1996, 35(9): 2955-2963 doi: 10.1021/ie950720s
77
Hohmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Science , 2002, 26(2-4): 157-162 doi: 10.1016/S0894-1777(02)00122-X
78
Buffone C, Sefiane K. Temperature measurement near the triple line during phase change using thermochromic liquid crystal thermography. Exp Fluids , 2005, 39: 99-110 doi: 10.1007/s00348-005-0986-4
79
Buffone C,Sefiane K, Christy J R E. Experimental investigation of the hydrodynamics and stability of an evaporating wetting film placed in a temperature gradient. Applied Thermal Engineering , 2004, 24(8,9): 1157-1170
80
Buffone C, Sefiane K. Ir measurements of interfacial temperature during phase change in a confined environment. Experimental Thermal and Fluid Science , 2004, 29(1): 65-74 doi: 10.1016/j.expthermflusci.2004.02.004
81
Buffone C, Sefiane K. Controlling evaporative thermocapillary convection using external heating: An experimental investigation. Experimental Thermal and Fluid Science , 2008, 32(6): 1287-1300 doi: 10.1016/j.expthermflusci.2008.02.009
82
Buffone C, Sefiane K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. International Journal of Multiphase Flow , 2004, 30(9): 1071-1091 doi: 10.1016/j.ijmultiphaseflow.2004.05.010
83
Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Physics of Fluids , 2005, 17(5): 052104 doi: 10.1063/1.1901688