Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Front. Energy  2009, Vol. 3 Issue (4): 396-401   https://doi.org/10.1007/s11708-009-0049-2
  Research articles 本期目录
Numerical simulation of micro scale flowing and boiling
Numerical simulation of micro scale flowing and boiling
Wen WANG1,Rui ZHUAN2,
1.; 2.School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
 全文: PDF(177 KB)  
Abstract:Numerical simulations of flowing and boiling in micro channels are presented, including the modeling of bubble dynamics of nucleate boiling, and a description of the interface of two phases with the volume-of-fluid (VOF). The two calculated cases are compared with related experimental data in literature. Some simulated results are found corresponding well to the experimental data. The simulated results also show the details of 3-dimensional heat transfer and the flow in micro channels, which are helpful to the investigation of the mechanism of two-phase heat transfer and flow in micro channels.
Key wordsvolume-of-fluid (VOF)    micro channel    nucleate boiling    bubble dynamics    simulation
出版日期: 2009-12-05
 引用本文:   
. Numerical simulation of micro scale flowing and boiling[J]. Front. Energy, 2009, 3(4): 396-401.
Wen WANG, Rui ZHUAN, . Numerical simulation of micro scale flowing and boiling. Front. Energy, 2009, 3(4): 396-401.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0049-2
https://academic.hep.com.cn/fie/CN/Y2009/V3/I4/396
Thome J R. Boiling in microchannels: a review of experiment and theory. International Journal of Heat and Fluid Flow, 2004, 25(2): 128―139

doi: 10.1016/j.ijheatfluidflow.2003.11.005
Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchannels. Exp Thermal Fluid Sci, 2002, 26(2―4): 389―407

doi: 10.1016/S0894-1777(02)00150-4
Bergles A E, Lienhard V J H, Kendall G E,Griffith P . Boiling and evaporation in small diameter channels. Heat Transfer Eng, 2003, 24(1): 18―40

doi: 10.1080/01457630304041
Young N O, Goldstein J S, Block M J. The motion of bubbles in a vertical temperature gradient. J Fluid Mech, 1959, 6(3): 350―356

doi: 10.1017/S0022112059000684
Liu Dong, Lee P-S, Garimella S V. Prediction of the onset of nucleate boiling in microchannelflow. International Journal of Heat andMass Transfer, 2005, 48(25, 26): 5134―5149?
Lee P C, Tseng F G, Pan Chin. Bubble dynamicsin microchannels. Part I: single microchannel. International Journal of Heat and Mass Transfer, 2004, 47(25): 5575―5589

doi: 10.1016/j.ijheatmasstransfer.2004.02.031
Li H Y, Tseng F G, Pan Chin. Bubble dynamics in microchannels, Part II: two parallelmicrochannels. International Journal ofHeat and Mass Transfer, 2004, 47(25): 5591―5601

doi: 10.1016/j.ijheatmasstransfer.2004.02.032
Koo J, Kleinstreuer C. Analysis of surface roughnesseffects on heat transfer in micro-conduits. International Journal of Heat and Mass Transfer, 2005, 48(13): 2625―2634

doi: 10.1016/j.ijheatmasstransfer.2005.01.024
Kleinstreuer C, Koo J. Computational analysis ofwall roughness effects for liquid flow in micro-conduits. J Fluids Eng, 2004, 126(1): 1―9

doi: 10.1115/1.1637633
Engin T, Evrensel C, Gordaninejad F. Numerical simulation of laminar flow of water-based magneto-rheologicalfluids in microtubes with wall roughness effect. International Communications in Heat and Mass Transfer, 2005, 32(8): 1016―1025

doi: 10.1016/j.icheatmasstransfer.2004.11.003
Ribatski G, Wojtan L, Thome J R. An analysis of experimental data and prediction methodsfor two-phase frictional pressure drop and flow boiling heat transferin micro-scale channels, Experimental Thermaland Fluid Science2006, 31: 1―19

doi: 10.1016/j.expthermflusci.2006.01.006
Noh W F, Woodward P R. SLIC (Simple line interfacecalculation). In: Van de Vooren A, ZandbergenP J. eds. Lecture Notes in Physics, 1976, 59: 330―340
Nichols B D, Hirt W C, Hotchkiss R S. A solution algorithm for transient fluid flow with multiplefree boundaries. Technical Report La-8355,Los Alamos National Lab, 1980
Hirt C W, Nichols B D. Volume of fluid (VOF) methodfor the dynamics of free boundaries. JComput Phys, 1981, 39: 201―225

doi: 10.1016/0021-9991(81)90145-5
Youngs D L. Time-dependent multi-material flow with large fluid distribution. In: Morton K W, Norman M L. eds. Numerical Methods for Fluid Dynamics, New York: Academic Press, 1982, 273―285
Ashgriz N, Poo J Y. FLAIR: Flux line-segmentmodel for advection and interface reconstruction. J Comput Phys, 1991, 93(2): 449―468

doi: 10.1016/0021-9991(91)90194-P
Kim S O, No H C. Second order model for freesurface convection and interface reconstruction. Int J Numer Methods Fluids, 1998, 26(1): 79―100

doi: 10.1002/(SICI)1097-0363(19980115)26:1<79::AID-FLD627>3.0.CO;2-9
Polliod J E. An analysis of piecewise linear interface reconstruction algorithmfor volume of fluid methods. . Department of Mathematics, University of California, Davis, 1992
Rider W J, Kothe D B. Reconstructing volume tracking. J Comput Phys, 1998, 141(2): 112―152

doi: 10.1006/jcph.1998.5906
Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. J Comput Phys, 1992, 100(2): 335―354

doi: 10.1016/0021-9991(92)90240-Y
Brackbill J U, Kothe D B. Dynamic modeling of the surfacetension. In: Proceedings of the 3rd MicrogravityFluid Physics Conference. Cleveland, OH, 1996, 693―698
Hirt C W, Nichols B D. Volume of fluid (VOF) methodfor the dynamics of free boundaries. JComput Phys, 1981, 39(1): 201―225

doi: 10.1016/0021-9991(81)90145-5
Rider W J, Kothe D B. Reconstructing volume tracking. J Comput Phys, 1998, 141(2): 112―152

doi: 10.1006/jcph.1998.5906
Thome J R, Dupont V, Jacobi A M. Heat transfer model for evaporation in microchannels.Part I: presentation of the model. InternationalJournal of Heat and Mass Transfer, 2004, 47(14-16): 3375―3385

doi: 10.1016/j.ijheatmasstransfer.2004.01.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed