Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Front. Energy  2009, Vol. 3 Issue (4): 402-405   https://doi.org/10.1007/s11708-009-0055-4
  Research articles 本期目录
Application of entransy dissipation theory in heat convection
Application of entransy dissipation theory in heat convection
Mingtian XU,Jiangfeng GUO,Lin CHENG,
Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China;
 全文: PDF(94 KB)  
Abstract:In the present work, formulas for calculating the rates of the local thermodynamic entransy dissipation in convective heat transfer in general, and the internal and external flows in particular, are established. Practically, these results may facilitate the application of entransy dissipation theory in thermal engineering. Theoretically they shed light on solving the contradiction of the minimum entropy production principle with balance equations in continuum mechanics.
Key wordsentransy dissipation    heat convection    heat exchanger
出版日期: 2009-12-05
 引用本文:   
. Application of entransy dissipation theory in heat convection[J]. Front. Energy, 2009, 3(4): 402-405.
Mingtian XU, Jiangfeng GUO, Lin CHENG, . Application of entransy dissipation theory in heat convection. Front. Energy, 2009, 3(4): 402-405.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0055-4
https://academic.hep.com.cn/fie/CN/Y2009/V3/I4/402
McClintock F A. The design of heat exchangers for minimum irreversibility. ASME Paper No. 51-A-108, 1951
Bejan A. Theconcept of irreversibility in heat exchanger design: Counter-flowheat exchangers for gas-to-gas applications. ASME J Heat Transfer, 1977, 99(3): 374―380
Bejan A. EntropyGeneration through Heat and Fluid Flow. New York: Wiley, 1982
Bejan A. AdvancedEngineering Thermodynamics. New York: Wiley, 1988
Bejan A. EntropyGeneration Minimization. New York: CRC Press, 1995
Bejan A. Entropygeneration minimization: the new thermodynamics of finite-size devicesand finite-time processes. J Appl Phys, 1996, 79(3): 1191―1218

doi: 10.1063/1.362674
Hesselgreaves J E. Rationalisation of second law analysis of heat exchanger. Int J Heat Mass Transfer, 2000, 43(22): 4189―4204

doi: 10.1016/S0017-9310(99)00364-6
Bertola V, Cafaro E. A critical analysis of theminimum entropy production theorem and its application to heat andfluid flow. Int J Heat Mass Transfer, 2008, 51(7,8): 1907―1912
Jaynes E T. The minimum entropy production principle. Annual Review of Physical Chemistry, 1980, 31: 579―601

doi: 10.1146/annurev.pc.31.100180.003051
Mamedov M M. On the incorrectness of the traditional proof of the principle ofminimum production. Technical Physics Letters, 2003, 29(1): 69―71
Landauer R. Inadequacyof entropy and entropy derivatives in characterizing the steady state. Phys Rev A, 1975, 12(2): 636―630

doi: 10.1103/PhysRevA.12.636
Ziman J M. The general variational principle of transport theory. Can. J. Phys., 1956, 34(12A): 1256―1273
Guo Z Y, Zhu H Y, Liang X G. Entransy — A physical quantity describing heattransfer ability. Int J Heat Mass Transfer, 2007, 50(13,14): 2545―2556
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed