Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2014, Vol. 8 Issue (3): 355-363   https://doi.org/10.1007/s11708-014-0319-5
  本期目录
Electromagnetic modeling and control of switched reluctance motor using finite elements
Ali ARIF1,Abderrazak GUETTAF1,Ahmed Chaouki MEGHERBI1,Said BENRAMACHE2,*(),Fateh BENC HABANE1
1. Electrical Engineering Department, University of Biskra, Biskra 07000, Algeria
2. Material Sciences Department, University of Biskra, Biskra 07000, Algeria
 全文: PDF(2063 KB)   HTML
Abstract

This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase 6/4 SRM is given theoretical calculation of inductance of the SRM model. The SRM was then tested in a Matlab/Simulink environment and numerically analyzed by using nonlinear 2D look-up tables created from its calculated flux linkage and static torque data. The simulation studied the hysteresis and voltage control strategies. The ideal waveform of stator current under the voltage-current condition and improved shape of rotor were proposed.

Key wordsswitched reluctance motor (SRM)    hysteresis    control    finite element analysis
收稿日期: 2013-05-23      出版日期: 2014-09-09
Corresponding Author(s): Said BENRAMACHE   
 引用本文:   
. [J]. Frontiers in Energy, 2014, 8(3): 355-363.
Ali ARIF,Abderrazak GUETTAF,Ahmed Chaouki MEGHERBI,Said BENRAMACHE,Fateh BENC HABANE. Electromagnetic modeling and control of switched reluctance motor using finite elements. Front. Energy, 2014, 8(3): 355-363.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-014-0319-5
https://academic.hep.com.cn/fie/CN/Y2014/V8/I3/355
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Dos Reis L L N, Coelho A A R, Almeida O M, Campos J C T. Modeling and controller performance assessment for a switched reluctance motor drive based on setpoint relay. ISA Transactions, 2009, 48(2): 206–212
doi: 10.1016/j.isatra.2008.10.012 pmid: 19100982
2 Omekanda A, Broche C, Baland R. Calcul des paramètres électromagnétiques d’un motor à réluctance à commutations par une méthode hybride: éléments finis. Equations intégrales de frontière. Journal de Physique. III, 1992,2(11): 2023–2033
doi: 10.1051/jp3:1992228
3 Song S, Liu W, Peitsch D, Schaefer U. Detailed design of a high speed switched reluctance starter/generator for more/all electric aircraft. Chinese Journal of Aeronautics, 2010, 23(2): 216–226
doi: 10.1016/S1000-9361(09)60208-9
4 Liu S, Tan G, Luo C, Zhang X, Ma Z. Magnetic performance of shearer switched reluctance motors drive. Procedia Earth and Planetary Science, 2011, 2: 98–103
doi: 10.1016/j.proeps.2011.09.016
5 Kwon Y A. Computation of optimal excitation of a switched reluctance motor using variable voltage. IEEE Transactions on Industrial Electronics, 1998, 45(1): 177–180
doi: 10.1109/41.661319
6 Hasanien H M, Muyeen S M. Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Electric Power Systems Research, 2012, 84(1): 206–213
doi: 10.1016/j.epsr.2011.11.019
7 Chen H J, Lu S L, Shi L X. Development and validation of a general-purpose ASIC chip for the control of switched reluctance machines. Energy Conversion and Management, 2009, 50(3): 592–599
doi: 10.1016/j.enconman.2008.10.013
8 Wang S C. An fully-automated measurement system for identifying magnetization characteristics of switched reluctance motors. Measurement, 2012, 45(5): 1226–1238
doi: 10.1016/j.measurement.2012.01.014
9 Chen H, Pavlitov C. Large power analysis of switched reluctance machine system for coal mine. Mining Science and Technology(China), 2009, 19(5): 657–659
10 Hasanien H M, Muyeen S M, Tamura J. Torque ripple minimization of axial laminations switched reluctance motor provided with digital lead controller. Energy Conversion and Management, 2010, 51(12): 2402–2406
doi: 10.1016/j.enconman.2010.05.004
11 Chen H, Trifa V. Design of 2000 kW switched reluctance machine system. Procedia Earth and Planetary Science, 2009, 1(1): 1380–1384
12 Ding W, Liang D, Tang R. A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine. Energy Conversion and Management, 2011, 52(1): 308–320
doi: 10.1016/j.enconman.2010.07.002
13 Song Q, Wang X, Guo L, Cheng L. Double switched reluctance motors parallel drive based on dual89C52 single chip microprocessors. Procedia Earth and Planetary Science, 2009, 1(1): 1435–1439
doi: 10.1016/j.proeps.2009.09.221
14 Chuang T S. Acoustic noise reduction of a 6/4 SRM drive based on third harmonic real power cancellation and mutual coupling flux enhancement. Energy Conversion and Management, 2010, 51(3): 546–552
doi: 10.1016/j.enconman.2009.10.020
15 Cameron D E, Lang J H, Umans S D. The origin and reduction of acoustic noise in doubly salient variable reluctance motors. IEEE Transactions on Industry Applications, 1992, 28(6): 1250–1255
doi: 10.1109/28.175275
16 Colby R S, Mottier F M, Miller T J E. Vibration modes and acoustic noise in a four-phase switched reluctance motor. IEEE Transactions on Industry Applications, 1996, 32(6): 1357–1364
doi: 10.1109/28.556639
17 Tang Y. Characterization, numerical analysis, and design of switched reluctance motors. IEEE Transactions on Industry Applications, 1997, 33(6): 1544–1552
doi: 10.1109/28.649967
18 Koibuchi K, Ohno T, Sawa K. A basic study for optimal design of switched reluctance motor by finite element method. IEEE Transactions on Magnetics, 1997, 33(2): 2077–2080
doi: 10.1109/20.582726
19 Arumugam R, Lowther D A, Krishnan R, Lindsay J F. Magnetic field analysis of a switched reluctance motor using a two dimensional finite element model. IEEE Transactions on Magnetics, 1985, 21(5): 1883–1885
doi: 10.1109/TMAG.1985.1063910
20 Xu L, Ruckstadter E. Direct modeling of switched reluctance machine by coupled filed-circuit method. IEEE Transactions on Energy Conversion, 1995, 10(3): 446–454
doi: 10.1109/60.464867
21 Amoros J G, Andrada P. Sensitivity analysis of geometrical parameters on a double-sided linearswitched reluctance motor. IEEE Transactions on Industrial Electronics, 2010, 57(1): 311– 319
doi: 10.1109/TIE.2009.2032208
22 Balaji M, Kamaraj V. Evolutionary computation based multi-objective pole shape optimization of switched reluctance machine. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 63–69
doi: 10.1016/j.ijepes.2012.05.011
23 Cao S, Tseng K J. Dynamic modeling of SRM including neighboring phase coupling effects. Electric Machines & Power Systems, 2000, 28(12): 1141–1163
doi: 10.1080/073135600449035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed