Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2015, Vol. 9 Issue (4): 413-425   https://doi.org/10.1007/s11708-015-0379-1
  本期目录
Classical state feedback controller for nonlinear systems using mean value theorem: closed loop-FOC of PMSM motor application
Abrar ALLAG1,*(),Abdelhamid BENAKCHA1,Meriem ALLAG1,Ismail ZEIN2,Mohamed Yacine AYAD2
1. LGEB Laboratory, Department of Electrical Engineering, University of Biskra, Biskra, BP 145, Algeria
2. R&D, Industrial Hybrid Vehicle Applications, Belfort 90010, France
 全文: PDF(1641 KB)   HTML
Abstract

The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.

Key wordsTakagi-Sugeno (T-S) fuzzy systems    sector nonlinearity    nonlinear controller    linear matrix inequality (LMI) approach    differential mean value theorem (DMVT)    field oriented control (FOC)    linear parameter varying (LPV)
收稿日期: 2014-11-24      出版日期: 2015-11-04
Corresponding Author(s): Abrar ALLAG   
 引用本文:   
. [J]. Frontiers in Energy, 2015, 9(4): 413-425.
Abrar ALLAG,Abdelhamid BENAKCHA,Meriem ALLAG,Ismail ZEIN,Mohamed Yacine AYAD. Classical state feedback controller for nonlinear systems using mean value theorem: closed loop-FOC of PMSM motor application. Front. Energy, 2015, 9(4): 413-425.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-015-0379-1
https://academic.hep.com.cn/fie/CN/Y2015/V9/I4/413
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Ichalal  D, Arioui  H, Mammar  S. Observer design for two-wheeled vehicle: a Takagi-Sugeno approach with unmeasurable premise variables. In: Proceedings of the 19th Mediterranean Conference on Control and Automation. Corfu, Greece, 2011, 1–6
2 Pertew  A M, Marquez  H J, Zhao  Q. H∞ observer design for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(7): 1211–1216
https://doi.org/10.1109/TAC.2006.878784
3 Luenberger  D G. An introduction to observers. IEEE Transactions on Automatic Control, 1971, 16(6): 596–602
https://doi.org/10.1109/TAC.1971.1099826
4 Rajamani  R. Observers for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 1998, 43(3): 397–401
https://doi.org/10.1109/9.661604
5 Bara  G I, Daafouz  J, Kratz  F, Ragot  J. Parameter dependent state observer design for affine LPV systems. International Journal of Control, 2001, 74(16): 1601–1611
https://doi.org/10.1080/00207170110086953
6 Zemouche  A, Boutayeb  M, Bara  G I. Observer design for nonlinear systems: an approach based on the differential mean value theorem. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain, 2005, 6353–6358
7 Phanomchoeng  G, Rajamani  R, Piyabongkarn  D. Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation. IEEE Transactions on Automatic Control, 2011, 56(5): 1163–1170
https://doi.org/10.1109/TAC.2011.2108552
8 Tanaka  K, Wang  H O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley-Interscience, 2001
9 Baranyi  P. TP model transformation as a way to LMI-based controller design. IEEE Transactions on Industrial Electronics, 2004, 51(2): 387–400
https://doi.org/10.1109/TIE.2003.822037
10 Merzoug  M, Naceri  F. Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM). International Journal of Electrical, Computer, Energetic, Electronics and Communication Engineering, 2008, 2(9): 107–112
11 Molavi  R, Khaburi  D A. Optimal control strategies for speed control of permanent-magnet synchronous motor drives. Proceedings of World Academy of Science Engineering and Technology, 2008, 44: 428
12 Štulrajter  M, Hrabovcová  V, Franko  M. Permanent magnets synchronous motor control theory. Journal of Electrical Engineering, 2007, 58(2): 79–84
13 Novotny  D, Lipo  T. Vector Control and Dynamics of AC Drives. New York: Oxford University Press, 1996
14 Solsona  J, Valla  M I, Muravchik  C. Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation. IEEE Transactions on Energy Conversion, 2000, 15(2): 163–168
https://doi.org/10.1109/60.866994
15 Shi  J L, Liu  T H, Chang  Y C. Optimal controller design of a sensorless PMSM control system. Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005. 
16 Zemouche  A, Boutayeb  M, Bara  G I. Observers for a class of Lipschitz systems with extension to H∞ performance analysis. Systems & Control Letters, 2008, 57(1): 18–27
https://doi.org/10.1016/j.sysconle.2007.06.012
17 Sahoo  P K, Riedel  T. Mean Value Theorems and Functional Equations. New Jersey: World Scientific Publishing Company, 1999
18 Bergsten  P, Palm  R, Driankov  D. Observers for Takagi-Sugeno fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 2002, 32(1): 114–121
https://doi.org/10.1109/3477.979966
19 Raghavan  S, Hedrick  J K. Observer design for a class of nonlinear systems. International Journal of Control, 1994, 59(2): 515–528
https://doi.org/10.1080/00207179408923090
20 Rahman  M A, Vilathgamuwa  D M, Uddin M  N, Tseng  K J. Nonlinear control of interior permanent-magnet synchronous motor. IEEE Transactions on Industry Applications, 2003, 39(2): 408–416
https://doi.org/10.1109/TIA.2003.808932
21 Ren  H, Liu  D. Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(1): 45–50
https://doi.org/10.1109/TCSII.2005.854592
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed