Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (1): 107-113   https://doi.org/10.1007/s11708-017-0450-1
  本期目录
用于生产低密度聚乙烯的超高压压缩机填料盘的过盈量设计
雷达1(), 李雪红1, 李云1, 任希文2
1. 西安交通大学化学工程与技术学院,中国西安 710049
2. 沈阳远大压缩机有限公司,中国沈阳 110027
Design of packing cup interference fit value of hypercompressors for low density polyethylene production
Da LEI1(), Xuehong LI1, Yun LI1, Xiwen REN2
1. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2. Shenyang Yuanda Compressor Co., Ltd., Shenyang 110027, China
 全文: PDF(737 KB)   HTML
摘要:

超高压压缩机是低密度聚乙烯生产的关键装置,其特点在于排气压力约为300 MP。填料盘是超高压压缩机气缸填料的基本单元,其本身采用外盘和内盘过盈配合装配而成。由于过盈配合会预压缩填料盘,需要对过盈量进行严格的设计来获得较好的预应力状态。对于内盘而言,三向压缩就是较好的预应力状态。填料盘过盈量的传统设计方法是基于受到内压和外压的厚壁模型,其计算得到的危险点位于内外盘的各自的内径处。本文采用有限元模拟方法来精确地价填超高压压缩机是低密度聚乙烯生产的关键装置,其特点在于排气压力约为300 MP。填料盘是超高压压缩机气缸填料的基本单元,其本身采用外盘和内盘过盈配合装配而成。由于过盈配合会预压缩填料盘,需要对过盈量进行严格的设计来获得较好的预应力状态。对于内盘而言,三向压缩就是较好的预应力状态。填料盘过盈量的传统设计方法是基于受到内压和外压的厚壁模型,其计算得到的危险点位于内外盘的各自的内径处。本文采用有限元模拟方法来精确地价填料盘的应力水平。发现填料盘的危险点位于相邻两个填料盘之间贴合密封面的边缘。填料盘的最大Von Mises等效应力随着过盈量的增大先减小后增大。最大的等效应力首先出现在内盘的内壁处,随着过盈量增大然后出现在贴合密封面的边缘,最后出现在外盘的内壁处。传统的方法忽略了轴向载荷对于内外盘配合应力的影响,导致外盘内壁处的等效应力计算值偏小。传统方法可以接受较大的过盈量,实际上会导致贴合密封面边缘或者外盘内壁处的屈服。此外,综合不同过盈量下的填料盘的疲劳分析,本文根据有限元分析修正了过盈量的选取的可行域。修正后的可行域相比于传统方法获得的范围更窄也更安全,其中可能导致实际填料盘发生局部屈服的范围已在修正的可行域中剔除。

Abstract

The hypercompressor is one of the core facilities in low density polyethylene production, with a discharge pressure of approximately 300 MPa. A packing cup is the basic unit of cylinder packing, assembled by the interference fit between an inner cup and an outer cup. Because the shrink-fitting prestresses the packing cup, serious design is needed to gain a favorable stress state, for example, a tri-axial compressive stress state. The traditional method of designing the interference fit value for packing cups depends on the shrink-fit theory for thick-walled cylinder subject to internal and external pressure. According to the traditional method, critical points are at the inner radii of the inner and external cup. In this study, the finite element method (FEM) has been implemented to determine a more accurate stress level of packing cups. Different critical points have been found at the edge of lapped sealing surfaces between two adjacent packing cups. The maximum Von Mises equivalent stress in a packing cup increases after a decline with the rise of the interference fit value. The maximum equivalent stress initially occurs at the bore of the inner cup, then at the edge of lapped mating surfaces, and finally at the bore of the outer cup, as the interference radius increases. The traditional method neglects the influence of axial preloading on the interference mating pressure. As a result, it predicts a lower equivalent stress at the bore of the external cup. A higher interference fit value accepted by the traditional method may not be feasible as it might already make packing cups yield at the edge of mating surfaces or the bore of the external cup. Along with fatigue analysis, the feasible range of interference fit value has been modified by utilizing FEM. The modified range tends to be narrower and safer than the one derived from the traditional method, after getting rid of shrink-fit values that could result in yielding in a real packing cup.

Key wordsinterference fit value    packing cup    hypercompressor    finite element method (FEM)
收稿日期: 2016-05-10      出版日期: 2019-03-20
通讯作者: 雷达     E-mail: sherlock.holmes@stu.xjtu.edu.cn
Corresponding Author(s): Da LEI   
 引用本文:   
雷达, 李雪红, 李云, 任希文. 用于生产低密度聚乙烯的超高压压缩机填料盘的过盈量设计[J]. Frontiers in Energy, 2019, 13(1): 107-113.
Da LEI, Xuehong LI, Yun LI, Xiwen REN. Design of packing cup interference fit value of hypercompressors for low density polyethylene production. Front. Energy, 2019, 13(1): 107-113.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0450-1
https://academic.hep.com.cn/fie/CN/Y2019/V13/I1/107
Fig.1  
ParametersTraditional methodProposed method
Equivalent stress σeqAt the bore of the outer cup
σeq<σs
The whole packing cup
σeq<σs
Circumferential stress σθAt the bore of the inner cup
σθ<0
Throughout the inner cup and at the bore of the outer cup
σθ<0
Equivalent alternating stress SaLapped sealing surfaces, lube oil hole, sealing ring groove.
Sa<σ1
Lapped sealing surface, lube oil hole, sealing ring groove
Sa<σ1
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 EGiacomelli, SPratesi, RFani, LGimignani. Improving availability of hypercompressors. In: ASME 2002 Pressure Vessels and Piping Conference. British Columbia, Canada, 2002, 71–82
2 EGiacomelli, J XShi, FManfrone. Considerations on design, operation and performance of hypercompressors. In: ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, USA, 2010, 31–40
3 EGiacomelli, FGraziani, SPratesi, NCampo. Advanced design methods for packing cups of hypercompressor cylinders. In: ASME 2003 Pressure Vessels and Piping Conference. Cleveland, USA, 2003,15–27
4 P CHanlon. Compressor Hand Book. New York: McGraw-Hill, 2001
5 E HPerez, SDiab, R DDixon. Design of hyper compressor packing cup rings for optimum fatigue life. In: ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Vancouver, Canada, 2006, 85–89
6 E SMiller, J MBlanding. Strain gage and thermocouple measurements of hyper compressor packing cups to study pressure sealing performance. In: ASME 2015 Pressure Vessels and Piping Conference. Boston, USA, 2015
7 HLankenau, SDamberg, BWagner. Hyper compressor revamp procedures to extend MTBM. In: ASME 2015 Pressure Vessels and Piping Conference. Boston, USA, 2015
8 EGiacomelli, FGraziani, SPratesi. Advanced design of packing and cylinders for hyper-compressors for LDPE production. In: ASME 2005 Pressure Vessels and Piping Conference. Fairfield, USA, 2005, 33–39
9 J YZheng, Z FDong, Sang. Process Equipment Design. Beijing: Chemical Industry Press, 2011 (in Chinese)
10 Y ZYu. Technical Manual of Positive Displacement Compressor. Beijing: China Machine Press, 2000
11 NCampo, FChiesi. Improved design for hypercompressor packing cups. In: ASME 2007 Pressure Vessels and Piping Conference. San Antonio, USA, 2007, 115–122
12 EGiacomelli, PBattagli, NCampo, FGraziani. Autofrettaging procedures on LDPE hyper-compressor components. In: ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Vancouver, Canada, 2006, 47–56
13 J JNi. Study on cracking reason and preventing measures of packing boxes used in the hypercompressor. Dissertation for the Doctorial Degree. Shanghai: East China University of Science and Technology, 2002 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed