Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 568-574   https://doi.org/10.1007/s11708-017-0461-y
  本期目录
Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation
M. LOGANATHAN1(), A. VELMURUGAN1, TOM PAGE2, E. JAMES GUNASEKARAN1, P. TAMILARASAN1
1. Department of Mechanical Engineering, Annamalai University, Annamalainagar 608002, India
2. Product Design and Manufacturing, Loughborough University, Loughborough LE11 3TU, United Kingdom
 全文: PDF(360 KB)   HTML
Abstract

The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.

Key wordshydrogen    exhaust gas recirculation (EGR)    diesel    combustion    heat release rate (HRR)    combustion duration
收稿日期: 2016-03-28      出版日期: 2017-12-14
Corresponding Author(s): M. LOGANATHAN   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 568-574.
M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation. Front. Energy, 2017, 11(4): 568-574.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0461-y
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/568
Properties Diesel Hydrogen
Chemical composition Cn H1.8n
(C8-C20)
H2
Auto-ignition temperature/K 530 858
Minimum ignition energy/mJ 0.02
Flammability limits (volume, in air)/% 0.7–5 4–75
Stoich. Air/fuel ratio on mass basis 14.5 34.3
Density 16 °C and 1 bar/(kg·m–3) 833–881 0.0838
Net heating valve/(MJ·kg–1) 42.5 119.93
Flame velocity/(cm·s–1) 30 265–325
Diffusivity in air/(cm2·s–1) 0.63
Cetane number 40–55
Octane number 130
Tab.1  
Make Type Max. power Displacement Bore× Stroke/mm2 Compression ratio Fuel injection timing Loading device
Kirloskar AV-1 Single cylinder, water cooled 3.7 kW at 1500 r/min 550 CC 80 × 110 16.5:1 21deg BTDC Eddy current dynamometer
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Maiboom A, Tauzia  X, He’tet J F . Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy, 2008, 33(1): 22–34
https://doi.org/10.1016/j.energy.2007.08.010
2 Masood M, Ishrat  M M, Reddy  A S. Computational combustion and emission analysis of hydrogen–diesel blends with experimental verification. International Journal of Hydrogen Energy,  2007,  32(13): 2539–2547
3 Heffel J W. NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 r/min using exhaust gas recirculation. International Journal of Hydrogen Energy, 2003, 28(8): 901–908
https://doi.org/10.1016/S0360-3199(02)00157-X
4 Selim M Y E . Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine. Energy Conversion and Management, 2003, 44(5): 707–721
https://doi.org/10.1016/S0196-8904(02)00083-3
5 Saravanan N, Nagarajan  G, Kalaiselvan K M ,  Dhanasekaran C . An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique. Renewable Energy, 2008, 33(3): 422–427
https://doi.org/10.1016/j.renene.2007.03.015
6 Rao B H, Shrivastava  KN, Bhakta HN . Hydrogen for dual fuel engine operation. International Journal of Hydrogen Energy,  1983,  8(5): 381–384
7 Bose P K, Maji  D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. International Journal of Hydrogen Energy, 2009, 34(11): 4847–4854
https://doi.org/10.1016/j.ijhydene.2008.10.077
8 Maiboom A, Tauzia  X, He’tet J F . Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy, 2008, 33(1): 22–34
https://doi.org/10.1016/j.energy.2007.08.010
9 Nakano M, Mandokoro  Y, Kubo S ,  Yamazaki S . Effects of exhaust gas recirculation in homogeneous charge compression ignition engines. International Journal of Engine Research,  2000,  1(3): 269–279
10 Saravanan N, Nagarajan  G, Dhanasekaran C ,  Kalaiselvan K . Experimental investigation of hydrogen port fuel injection in DI diesel engine. International Journal of Hydrogen Energy, 2007, 32(16): 4071–4080
https://doi.org/10.1016/j.ijhydene.2007.03.036
11 Saravanan N, Nagarajan  G. An experimental investigation of hydrogen-enriched air induction in a diesel engine system. International Journal of Hydrogen Energy, 2008, 33(6): 1769–1775
https://doi.org/10.1016/j.ijhydene.2007.12.065
12 Ghazal O.A comparative evaluation of the performance of different fuel induction techniques for blends hydrogen methane SI engine. International Journal of Hydrogen Energy,  2013,  38(16): 6848–6856
13 Bauer CG, Forest  TW. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part II: Driving cycle simulations. International Journal of Hydrogen Energy,  2001,  26(1): 55–70
14 Szwaja S, Grab-Rogalinski  K. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy,  2009,  34(10): 4413–4421
15 Noda T, Foster  D E. A numerical study to control combustion duration of hydrogen-fueled HCCI by using multi-zone chemical kinetics simulation. SAE Technical Paper 2001-01-0250, 2001
16 Das L M. Hydrogen engine: research and development (R&D) programmersinIndian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy, 2002, 27(9): 953–965
https://doi.org/10.1016/S0360-3199(01)00178-1
17 Bose P K, Maji  D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation.International Journal of Hydrogen Energy,  2009,  34(11): 4847–4854
18 Bari S, Mohammad Esmaeil  M. Effect of H2/O2 addition in increasing the thermal efficiency of a diesel engine. Fuel, 2010, 89(2): 378–383
https://doi.org/10.1016/j.fuel.2009.08.030
19 Antunes JM G, Mikalsen  R, Roskilly AP . An experimental study of direct injection compression ignition hydrogen engine.International Journal of Hydrogen Energy,  2009,  34(15): 6516–6522
20 Welch A B, Wallace  J S. Performance characteristic of a hydrogen-fueled diesel engine with ignition assist. International Fuels & Lubricants Meeting & Exposition, 1990: 902070
21 Naber J D, Szwaja  S. Statistical approach to characterize combustion knock in the hydrogen fuelled SI engine. Experiments in Fluids,  2007,  65(39): 1084–1095
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed