Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (2): 297-304   https://doi.org/10.1007/s11708-017-0478-2
  本期目录
潮汐能驱动的反渗透海水淡化系统的经济性评价
凌长明1, 王逸飞1, 闵春华2, 张玉文3()
1. 广州海洋大学机械与动力学院,湛江 524025,中国
2. 河北工业大学能源与环境学院,天津 300401,中国
3. 密苏里大学机械与航空学院,密苏里州哥伦比亚,美国
Economic evaluation of reverse osmosis desalination system coupled with tidal energy
Changming LING1, Yifei WANG1, Chunhua MIN2, Yuwen ZHANG3()
1. College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524025, China
2. College of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
3. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
 全文: PDF(278 KB)   HTML
摘要:

提出了一种潮汐能驱动的反渗透(RO)海水淡化系统。潮汐能通过水力涡轮产生的机械能直接驱动RO装置。本文将常规RO系统和潮汐能RO系统的技术性能及其淡水生产成本进行了比较。研究发现,与常规RO系统相比,本文提出的潮汐能RO系统可节约淡水生产成本31.0%-41.7%。.存在一个最佳的进水压力使得成本最低。在高进料压力或高回收率的情况下,潮汐系统RO系统可节省更多成本。潮汐能RO系统的最佳进水压力比常规RO系统要高.越耐用的潮汐能RO系统,也越节省产水成本。系统可以节省更多的水的成本。当场地设施成本率低于40%时,潮汐系统RO系统产水的成本开始低于常规RO系统。本文提出的技术方案未来有望成为一种有效的海水淡化选择方案

Abstract

A reverse osmosis (RO) desalination system coupled with tidal energy is proposed. The mechanical energy produced by the tidal energy through hydraulic turbine is directly used to drive the RO unit. The system performances and the water cost of the conventional and tidal energy RO systems are compared. It is found that the proposed tidal energy RO system can save water cost in the range of 31.0%-41.7% in comparison with the conventional RO system. There is an optimum feed pressure that leads to the lowest water cost. The tidal RO system can save more costs at a high feed pressure or a high water recovery rate. The optimum feed pressure of the tidal energy RO system is higher than that of the conventional RO system. The longer lifetime of the tidal energy RO system can save even more water cost. When the site development cost rate is lower than 40%, the water cost of the tidal energy RO system will be lower than that of the conventional RO system. The proposed technology will be an effective alternative desalination method in the future.

Key wordsreverse osmosis (RO) desalination    tidal energy    model    economic evaluation
收稿日期: 2017-01-18      出版日期: 2018-06-04
通讯作者: 张玉文     E-mail: zhangyu@missouri.edu
Corresponding Author(s): Yuwen ZHANG   
 引用本文:   
凌长明, 王逸飞, 闵春华, 张玉文. 潮汐能驱动的反渗透海水淡化系统的经济性评价[J]. Frontiers in Energy, 2018, 12(2): 297-304.
Changming LING, Yifei WANG, Chunhua MIN, Yuwen ZHANG. Economic evaluation of reverse osmosis desalination system coupled with tidal energy. Front. Energy, 2018, 12(2): 297-304.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0478-2
https://academic.hep.com.cn/fie/CN/Y2018/V12/I2/297
Fig.1  
Fig.2  
Fig.3  
ParameterSymbol (unit)Value
Water permeability coefficientA (kg/(s·N))2.909×109
Solute permeability coefficientB (kg/(m2·s))2.989×105
Max operating pressurepmax (MPa)8.3
Membrane active areaS (m2)35.3
Product water flow rate*Qp (m3/h)0.946
Salt rejection*r(%)99.6
Membrane costCm ($/m2)30
Tab.1  
ParameterSymbol (unit)Value
Feed concentrationCf (kg/m3)35
Feed water temperatureT (°C)25
High pressure efficiencyhHpp0.74
Intake pump efficiencyhin0.74
Hydraulic turbine efficiencyhTb0.67
Number of membrane elements per PVNm6
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
AMembrane pure water permeability/(kg·N1·s1)
ACCAnnual capital costs/($·a1)
AECAnnual energy cost/($·a1)
AOCannual operating costs/($·a1)
BMembrane salts permeability/(kg·m2·s1)
CSalts concentration/( kg·m3)
CeElectricity cost/($·kWh1)
CmMembrane cost/($·m2)
CpwUnit product water cost/($·m3)
CCCapital cost/$
DCCDirect capital cost/$
FThe plant load factor
iInterest rate/%
ICCIndirect capital cost/$
NmNumber of membrane elements in a PV
NpNumber of pressure vessels in a plant
nPlant life/a
OCOperating cost/$
pPressure/Pa
pmMembrane replacement rate/a1
QFlow rate/(m3·h1)
RUniversal gas constant/(J·mol1·K1)
rSalts rejection rate/%
SMembrane surface area/m2
sCost saving rate/%
TTemperature/K
TCCTotal capital cost/$
xSite developmentcost rate of DCC for tidal energy RO system/%
Greek symbols
ηEfficiency/%
πOsmotic pressure/Pa
ϕWater recovery rate/%
Superscripts
kIndex of membrane element in the pressure vessel
Subscripts
crConventional RO system
enrEnergy
equipEquipment
fFeed water
HppHigh pressure pump
inIntake and pretreatment
mMembrane element
maxMaximum value
pProduct water
pdPressure device
pwProduct water
siteSite development
TbHydraulic turbine
tTotal
trTidal energy RO system
  
1 Will M, Klinko K. Optimization of seawater RO systems design. Desalination, 2005, 173(1): 1–12
2 He W, Wang Y, Shaheed M H. Stand–alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis). Energy, 2015, 86: 423–435
3 Vince F, Marechal F, Aoustin E, Bréant P. Multi-objective optimization of RO desalination plants. Desalination, 2008, 222 (1–3): 96–118
4 Malek A, Hawlader M N A, Ho J C. A lumped transport parameter approach in predicting B10 RO permeator performance. Desalination, 1994, 99(1): 19–38
5 DOW. Design a reverse osmosis system: design equations and parameters. Technical Manual, 2006
6 Marcovecchio M G, Aguirre P A, Scenna N J. Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm. Desalination, 2005, 184 (1–3): 259–271
7 Lu Y Y, Hua Y D, Zhang X L, Wu L Y, Liu Q Z. Optimum design of reverse osmosis system under different feed concentration and product specification. Journal of Membrane Science, 2007, 287(2): 219–229
8 Malek A, Hawlader M N A, Ho J C. Design and economics of RO seawater desalination. Desalination, 1996, 105(3): 245–261
9 Oh H J, Hwang T M, Lee S. A simplified simulation model of RO systems for seawater desalination. Desalination, 2009, 238(1–3): 128–139
10 Bouhelal O K, Merrouch R, Zejli D. Costs investigation of coupling an RO desalination system with a combined cycle power plant, using DEEP code. Desalination, 2004, 165(1–3): 251–257
11 Nisan S, Benzarti N. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs. Desalination, 2008, 229(1–3): 125–146
12 Kosmadakis G, Manolakos D, Kyritsis S, Papadakis G. Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination. Renewable Energy, 2009, 34(6): 1579–1586
13 Khalifa A J N. Evaluation of different hybrid power scenarios to reverse osmosis (RO) desalination units in isolated areas in Iraq. Energy for Sustainable Development, 2011, 15(1): 49–54
14 Iaquaniello G, Salladini A, Mari A, Mabrouk A A, Fath H E S. Concentrating solar power (CSP) system integrated with MED-RO hybrid desalination. Desalination, 2014, 336(1): 121–128
15 Loutatidou S, Arafat H A. Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy. Desalination, 2015, 365: 277–292
16 Caldera U, Bogdanov D, Breyer C. Local cost of seawater RO desalination based on solar PV and wind energy: a global estimate. Desalination, 2016, 385: 207–216
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed