Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 401-409   https://doi.org/10.1007/s11708-017-0496-0
  本期目录
β-Nickel hydroxide cathode material for nano-suspension redox flow batteries
Yue LI1, Cheng HE1, Elena V. TIMOFEEVA2, Yujia DING2, Javier PARRONDO1, Carlo SEGRE2, Vijay RAMANI1()
1. Center for Solar Energy?and Energy Storage, Department of Energy,?Environmental and Chemical?Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
2. Physics Department, Illinois Institute of Technology, Chicago, IL 60616, USA
 全文: PDF(393 KB)   HTML
Abstract

As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated usingin-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

Key wordsnano-suspension flow battery    β-Ni(OH)2    scanning electronic microscopy (SEM)    X-ray diffraction (XRD)    X-ray adsorption near edge structure (XANES)    extended X-ray absorption fine structure (EXAFS)
收稿日期: 2017-04-21      出版日期: 2017-09-07
Corresponding Author(s): Vijay RAMANI   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 401-409.
Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI. β-Nickel hydroxide cathode material for nano-suspension redox flow batteries. Front. Energy, 2017, 11(3): 401-409.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0496-0
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/401
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Sample Rf/% Model Amp. Path N R σ2
Pristine Ni(OH) 2 4.7 b-Ni(OH)2 0.77 Ni-O 6 2.07(2) 0.005(4)
Ni-Ni 6 3.11(2) 0.006(3)
Charged sample 1.2 b-NiOOH 0.73 Ni-O 6 1.91(1) 0.006(2)
Ni-Ni 6 2.83(2) 0.010(2)
Discharged sample 4.0 b-Ni(OH)2 0.59 Ni-O 6 2.08(3) 0.0055
Ni-Ni 6 3.12(3) 0.0061
g-NiOOH 0.24 Ni-O 6 1.94(5) 0.0059
Ni-Ni 6 2.83(5) 0.0096
Tab.1  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Zhou H, Zhou  Z. Effects of ultrasonic treatment on the structure and electrochemical performance of spherical  b-Ni(OH)2. Chinese Journal of Chemistry, 2006, 24(1): 37–44
https://doi.org/10.1002/cjoc.200690019
2 Shuka A K, Venugopalah  S, Hariprakash B . Nickel-based rechargeable batteries. Journal of Power Sources, 2001, 100(1–2): 125–148 
https://doi.org/10.1016/S0378-7753(01)00890-4
3 Freitas M B J G . Nickel hydroxide powder for NiOOH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources, 2001, 93(1–2): 163–173
https://doi.org/10.1016/S0378-7753(00)00570-X
4 Xu P, Han  X, Zhang B ,  Lv Z, Liu  X. Characterization of an ultrafine nickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds, 2007, 436(1–2): 369–374
https://doi.org/10.1016/j.jallcom.2006.07.055
5 Cheng J, Zhang  L, Yang Y ,  Wen Y, Cao  G, Wang X . Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications, 2007, 9(11): 2639–2642
https://doi.org/10.1016/j.elecom.2007.08.016
6 Jia C, Pan  F, Zhu Y ,  Huang Q ,  Lu L, Wang  Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Science Advances, 2015, 1(10): e1500886
https://doi.org/10.1126/sciadv.1500886
7 Pan J, Sun  Y, Wan P ,  Wang Z, Liu  X. Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochemistry Communications, 2005, 7(8): 857–862
https://doi.org/10.1016/j.elecom.2005.05.004
8 Guan X, Deng  J. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 2007, 61(3): 621–625
https://doi.org/10.1016/j.matlet.2006.05.026
9 Han X, Xu  P, Xu C ,  Zhao L, Mo  Z, Liu T . Study of the effects of nanometer  b-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta, 2005, 50(14): 2763–2769
https://doi.org/10.1016/j.electacta.2004.11.025
10 Köhler U, Antonius  C, Bauerlein P . Advances in alkaline batteries. Journal of Power Sources, 2004, 127(1–2): 45–52
https://doi.org/10.1016/j.jpowsour.2003.09.006
11 Liu X, Yu  L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Materials Letters, 2004, 58(7–8): 1327–1330
https://doi.org/10.1016/j.matlet.2003.09.054
12 Losev A V, Petrii  O A. Effect of the aggregate stability of a suspension on the rate of charge transfer from the current collector of the suspension electrode to suspension particles. Elektrokhimiya, 1976, 12: 1749
13 Garche J, Dietz  H, Wiesener K . The suspension electrode technique for electrochemical analysis of lead dioxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 180(1–2): 577–585
https://doi.org/10.1016/0368-1874(84)83608-4
14 Duduta M, Ho  B, Wood V C ,  Limthongkul P ,  Brunini V E ,  Carter W C ,  Chiang Y M . Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 4(1): 551–556
15 Pomerantseva, Kumbur E C ,  Gogotsi Y . Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Applied Materials & Interfaces, 2014, 6(11): 8886–8893
16 Pandya K I, O’Grady  W E, Corrigan  D A, McBreen  J, Hoffman R W . Extended X-ray absorption fine structure investigation of nickel hydroxides. Journal of Physical Chemistry, 1990, 94(1): 21–26
https://doi.org/10.1021/j100364a005
17 Ichiyanagi Y, Kondoh  H, Yokoyama T ,  Okamoto K ,  Nagai K ,  Ohta T. X-ray absorption fine-structure study on the Ni(OH)2 monolayer nanoclusters. Chemical Physics Letters, 2003, 379(3–4): 345–350
https://doi.org/10.1016/j.cplett.2003.08.051
18 Farley N R S ,  Gurman S J ,  Hillman A R . In-situ EXAFS study of nickel hydroxide electrodes during discharge. Journal of Synchrotron Radiation, 1999, 6(3): 198–200
https://doi.org/10.1107/S0909049599001168
19 Morishita M, Ochiai  S, Kakeya T ,  Ozaki T ,  Kawabe Y ,  Watada M ,  Tanase S ,  Sakai T . Phase transformation in the charge-discharge process and the structural analysis by synchrotron XAFS and XRD for nickel hydroxide electrode. Electrochemistry, 2008, 76(11): 802–807
https://doi.org/10.5796/electrochemistry.76.802
20 Zimmerman A H . Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life. The 1992 NASA Aerospace Battery Workshop. NASA CP-3102, 1993, 153–175
21 Tessier C, Haumesser  P H, Bernard  P, Delmas C . The structure of Ni(OH)2: from the ideal material to the electrochemically active one. Journal of the Electrochemical Society, 1999, 146(6): 2059–2067
https://doi.org/10.1149/1.1391892
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed