Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (4): 461-471   https://doi.org/10.1007/s11708-017-0503-5
  本期目录
Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage
Yan LUO1, Xiaoze DU2, Lijun YANG2, Chao XU2(), Muhammad AMJAD3
1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206; School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
3. School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
 全文: PDF(481 KB)   HTML
Abstract

Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MWe in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWhe with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

Key wordsdirect steam generation    solar power tower    solar multiple    thermal energy storage capacity    levelized cost of electricity (LCOE)
收稿日期: 2016-05-08      出版日期: 2017-12-14
Corresponding Author(s): Chao XU   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(4): 461-471.
Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage. Front. Energy, 2017, 11(4): 461-471.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0503-5
https://academic.hep.com.cn/fie/CN/Y2017/V11/I4/461
Parameter Value
Annual DNI/(kWh·m−2) 1773.0
Average ambient temperature/°C 18.4
Average wind velocity/(m·s−1) 2.68
Design time Noon of the spring equinox day
Design DNI/(W·m−2) 840.0
Design ambient temperature/ °C 26.0
Design wind velocity/(m·s−1) 3.0
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Item Cost model
Investment Specific investment in land/($·m−2) 1.25 [27]
Specific investment in improvement/($·m−2) 20 [27]
Specific investment in solar field/($·m−2) 200 [27]
Investment in dual-receiver/$ 66.46×(AR 1440 ) 0.7 [21]
Investment in tower/$ 29.15×(H 203 )0.0113 [27]
Specific investment in thermal storage/($·kWh−2th) 43 [11]
Specific investment in power generationunit/($·kWh−2e) 1000 [26]
Indirect cost for power generationunit/% 25 [26]
Operation and maintenance O&M equipment cost percentageof investment per year/% 1 [18]
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
San Jose, USA Bishop, USA
Annual DNI/(kWh·m−2) 1952.0 2748.0
Average ambient temperature/°C 14.9 14.3
Average wind velocity/(m·s−1) 3.03 3.45
Design DNI/(W·m−2) 875 904
Design ambient temperature/°C 16.6 16.7
Design wind velocity/(m·s−1) 0.0 3.6
Tab.3  
Sevilla, Spain San Jose, USA Bishop, USA
Minimum LCOE/(¢·kWh?1e) 21.77 19.57 14.62
Annual electricity production/GWhe 167.64 186.45 272.21
SM 1.7 1.7 1.3
Thermal storage capacity/h 3 3 3
Tab.4  
Size of solar field equivalent electricity/MWe
50 65 85 100 115 135 150
Minimum LCOE/(¢·kWh?1e) 24.53 23.31 22.25 21.77 21.44 21.15 20.92
Annual electricity production per unit area ofheliostats/(kWhe·m?2) 313.01 309.28 305.24 300.35 296.90 291.08 288.68
SM 1.7 1.7 1.7 1.7 1.7 1.7 1.7
Thermal storage capacity/h 3 3 3 3 3 3 3
Tab.5  
Fig.12  
Investment ratio
0.5 0.75 1
Thermal storage system SM 2.7 2.0 1.7
Thermal storage capacity/h 9 6 3
Power generation unit SM 1.3 1.7 1.7
Thermal storage capacity/h 0 3 3
Tab.6  
A
H Enthalpy, kJ/kg
H Tower height, m
m Mass flow rate, kg/s
P Pressure, Pa
Q Collected solar energy, MW
T Temperature, °C
V Wind speed, m/s
W Mechanical power exported from theturbine, W
Greek symbols
η Efficiency
Subscript
0 Rated condition
1 Inlet
2 Outlet
c Storage charge
d Storage discharge
g Generator
inc Incident solar energy
o Ambient
p Pump
R Receiver
T Turbine
tes Thermal energy storage system
  
1 Zhang H L, Baeyens  J, Degrève J ,  Cacères G . Concentrated solar power plants: review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481 
https://doi.org/10.1016/j.rser.2013.01.032
2 Ma X, Xu  C, Yu Z ,  Ju X. A review of salt hydrate-based sorption technologies for long-term thermal energy storage. Science Bulletin, 2015, 60(36): 3569–3579
3 Kolb G J, Ho  C K, Mancini  T R, Gary  J A. Power tower technology roadmap and cost reduction plan. Report No. SAND2011–2419, Sandia National Laboratories, Albuquerque, NM, 2011
4 Romero M, Buck  R, Pacheco J E . An update on solar central receiver systems, projects, and technologies. Journal of Solar Energy Engineering, 2002, 124(2): 98–108
https://doi.org/10.1115/1.1467921
5 Tehrani S S M ,  Taylor R A ,  Saberi P ,  Diarce G . Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renewable Energy, 2016, 96: 120–136 
https://doi.org/10.1016/j.renene.2016.04.036
6 Osuna R, Fernandez  V, Romero S ,  Romero M ,  Sanchez M . PS10: a 11.0-MW solar tower power plant with saturated steam receiver. In: Proceedings of the 12th Solar PACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies 2014, Oaxaca, México
7 Birnbaum J, Eck  M, Fichtner M ,  Hirsch T ,  Lehmann D ,  Zimmermann G . A direct steam generation solar power plant with integrated thermal storage. Journal of Solar Energy Engineering, 2010, 132(3): 031014
https://doi.org/10.1115/1.4001563
8 Feldhoff J F, Schmitz  K, Eck M ,  Schnatbaum-Laumann L ,  Laing D ,  Ortiz-Vives F ,  Schulte-Fischedick J . Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Solar Energy, 2012, 86(1): 520–530
https://doi.org/10.1016/j.solener.2011.10.026
9 Laing D, Bahl  C, Bauer T ,  Lehmann D ,  Steinmann W D . Thermal energy storage for direct steam generation. Solar Energy, 2011, 85(4): 627–633
https://doi.org/10.1016/j.solener.2010.08.015
10 Laing D, Bauer  T, Lehmann D ,  Bahl C. Development of a thermal energy storage system for parabolic trough power plants with direct steam generation. Journal of Solar Energy Engineering, 2010, 132(2): 021011
https://doi.org/10.1115/1.4001472
11 Li Y, Yang  Y. Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields. Applied Energy, 2015, 160: 673–680
https://doi.org/10.1016/j.apenergy.2015.08.094
12 Pacheco J E, Bradshaw  R W, Dawson  D B, Rosa  W D, Gilbert  R, Goods S ,  Hale M J ,  Jacobs P ,  Jones S A ,  Kolb G J ,  Prairie M R ,  Reilly H E ,  Showalter S K ,  Vant-Hull L L . Final test and evaluation results from the Solar Two project. Report No. SAND2002–0120, Sandia National Laboratories, Albuquerque, NM, 2002
13 Moore R, Vernon  M, Ho C K ,  Siegel N P . Design considerations for concentrating solar power tower systems employing molten salt. Report No. SAND2010–6978, Sandia National Laboratories, Albuquerque, NM, 2010
14 Rodríguez-Sánchez M R ,  Soria-Verdugo A ,  Almendros-Ibáñez J A, Acosta-Iborra A ,  Santana D . Thermal design guidelines of solar power towers. Applied Thermal Engineering, 2014, 63(1): 428–438
https://doi.org/10.1016/j.applthermaleng.2013.11.014
15 Collado F J, Guallar  J. A review of optimized design layouts for solar power tower plants with campo, code. Renewable & Sustainable Energy Reviews, 2013, 20: 142–154
https://doi.org/10.1016/j.rser.2012.11.076
16 Boudaoud S, Khellaf  A, Mohammedi K ,  Behar O . Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria. Energy Conversion and Management, 2015, 89: 655–664 
https://doi.org/10.1016/j.enconman.2014.10.033
17 Cocco D, Serra  F. Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1MWe class concentrating solar power plants. Energy, 2015, 81: 526–536 
https://doi.org/10.1016/j.energy.2014.12.067
18 Montes M J, Abánades  A, Martínez-Val J M. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy, 2009, 83(5): 679–689
https://doi.org/10.1016/j.solener.2008.10.015
19 Jorgenson J, Denholm  P, Mehos M ,  Turchi C . Estimating the performance and economic value of multiple concentrating solar power technologies in a production cost model. Technical Report. National Renewable Energy Laboratory, Golden, CO, 2013
20 Luo Y, Du  X, Wen D . Novel design of central dual-receiver for solar power tower. Applied Thermal Engineering, 2015, 91: 1071–1081 
https://doi.org/10.1016/j.applthermaleng.2015.08.074
21 Blair N, Dobos  A P, Freeman  J, Neises T ,  Wagner M ,  Ferguson T ,  Gilman P ,  Janzou S . System advisor model, sam 2014.1.14: general description. Technical Report. National Renewable Energy Laboratory, Golden, CO, 2014
22 Liu J. Solar Thermal Dynamic Power Generation Technology. Beijing: Chemical Industry Press, 2012 (in Chinese)
23 Fan Q, Yan  W, Yan S . Boiler Principle. Beijing: China Electric Power Press, 2004 (in Chinese)
24 Flueckiger S M ,  Iverson B D ,  Garimella S V ,  Pacheco J E . System-level simulation of a solar power tower plant with thermocline thermal energy storage. Applied Energy, 2014, 113: 86–96 
https://doi.org/10.1016/j.apenergy.2013.07.004
25 Montes M J, Abánades  A, Martinez-Val J M ,  Valdés M . Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy, 2009, 83(12): 2165–2176
https://doi.org/10.1016/j.solener.2009.08.010
26 Collado F J, Guallar  J. Two-stages optimised design of the collector field of solar power tower plants. Solar Energy, 2016, 135: 884–896
https://doi.org/10.1016/j.solener.2016.06.065
27 Turchi C S, Heath  G A. Molten salt power tower cost model for the system advisor model (sam). Office of Scientific & Technical Information Technical Reports. University of North Texas Libraries, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed