Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2018, Vol. 12 Issue (3): 400-410   https://doi.org/10.1007/s11708-018-0565-z
  本期目录
废物管理部门的碳足迹评估:中国和日本的比较分析
孙露1,2, 李照令2,3(), 藤井实2, 肱岗靖明2, 藤田壮2
1. 日本柏之叶市东京大学新领域创成科学研究科环境系统学专攻(277-8563)
2. 日本筑波市国立环境研究所社会环境研究中心
3. 日本筑波市筑波大学生命环境学专攻(305-8506)
Carbon footprint assessment for the waste management sector: A comparative analysis of China and Japan
Lu SUN1,2, Zhaoling LI2,3(), Minoru FUJII2, Yasuaki HIJIOKA2, Tsuyoshi FUJITA2
1. Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan
2. Center for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
3. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8506, Japan
 全文: PDF(295 KB)   HTML
摘要:

由于快速城市化进程和都市固体废物(MSW)的不断增加,废物管理正成为现代社会的一个关键问题。本文通过运用混合生命周期评价和投入产出分析模型来定量分析废物管理部门的碳足迹,其中包括直接和间接碳排放,回收废弃物的碳排放。以中国和日本作为案例研究,同时突出了不同行业对废弃物管理部门碳排放的影响。结果表明,中国废物处理部门的生命周期碳足迹为5901万吨,日本为701万吨。这些碳足迹之间的差距是由两国废弃物处理系统和处理过程的差异造成的。对于废弃物处理部门的间接碳足迹,中国物质消耗导致的碳足迹和折旧碳足迹远高于日本,而电力和热消费导致的碳足迹,中国仅为日本的一半。中国和日本废弃物处理部门的直接能源消费导致的碳足迹相似,然而,中国都市固体废弃物处理过程中产生的二氧化碳排放量(4646万吨)远远高于日本(272万吨)。废弃物回收利用带来的二氧化碳减排量相当可观,中国达到18137万吨,日本为9676万吨。最后,本文提出了中国和日本废物管理系统的优化措施,同时也强调了发达国家在废弃物管理上的先进经验可以为中国等发展中国家的废弃物处理提供科学支持。

Abstract

Waste management is becoming a crucial issue in modern society owing to rapid urbanization and the increasing generation of municipal solid waste (MSW). This paper evaluates the carbon footprint of the waste management sector to identify direct and indirect carbon emissions, waste recycling carbon emission using a hybrid life cycle assessment and input-output analysis. China and Japan was selected as case study areas to highlight the effects of different industries on waste management. The results show that the life cycle carbon footprints for waste treatment are 59.01 million tons in China and 7.01 million tons in Japan. The gap between these footprints is caused by the different waste management systems and treatment processes used in the two countries. For indirect carbon footprints, China’s material carbon footprint and depreciation carbon footprint are much higher than those of Japan, whereas the purchased electricity and heat carbon footprint in China is half that of Japan. China and Japan have similar direct energy consumption carbon footprints. However, CO2 emissions from MSW treatment processes in China (46.46 million tons) is significantly higher than that in Japan (2.72 million tons). The corresponding effects of waste recycling on CO2 emission reductions are considerable, up to 181.37 million tons for China and 96.76 million tons for Japan. Besides, measures were further proposed for optimizing waste management systems in the two countries. In addition, it is argued that the advanced experience that developed countries have in waste management issues can provide scientific support for waste treatment in developing countries such as China.

Key wordswaste management    waste recycling    carbon footprint    hybrid LCA
收稿日期: 2017-12-30      出版日期: 2018-09-05
通讯作者: 李照令     E-mail: li.zhaoling@nies.go.jp
Corresponding Author(s): Zhaoling LI   
 引用本文:   
孙露, 李照令, 藤井实, 肱岗靖明, 藤田壮. 废物管理部门的碳足迹评估:中国和日本的比较分析[J]. Frontiers in Energy, 2018, 12(3): 400-410.
Lu SUN, Zhaoling LI, Minoru FUJII, Yasuaki HIJIOKA, Tsuyoshi FUJITA. Carbon footprint assessment for the waste management sector: A comparative analysis of China and Japan. Front. Energy, 2018, 12(3): 400-410.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0565-z
https://academic.hep.com.cn/fie/CN/Y2018/V12/I3/400
Fig.1  
No. Industry No. Industry
1 Agriculture, forestry, and fishing 13 General/special equipment manufacturing industry
2 Mining industry 14 Transportation equipment manufacturing industry
3 Food manufacturing and tobacco processing industry 15 Electrical, communications equipment, computers, and other electronic equipment manufacturing
4 Textile industry 16 Scrap and waste
5 Textile garments, shoes, hats, leather, down, and their product industry 17 Electricity and heat production, supply industry
6 Wood processing and furniture manufacturing 18 Gas production and supply industry
7 Paper printing, culture, education and sports goods, instrumentation, and other handicrafts 19 Water production and supply industry
8 Petroleum processing, coking, and nuclear fuel processing 20 Construction industry
9 Chemical industry 21 Transportation and warehousing industry
10 Nonmetallic mineral products industry 22 Wholesale and retail trade industry
11 Metal smelting and plating industry 23 Other industries
12 Metal products industry
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Item Treatment method Landfill Incineration Fermentation Recycle Total
Treatment amount China 105.12 35.84 3.93 - 144.89
Japan 0.57 33.99 - 8.06 42.62
Carbon footprint China 3.52 45.48 0.17 - 49.17
Japan 0.19 5.44 - 0.38 6.01
Tab.2  
Item Recycle amount/Mt Emission factor in production process/(tCO2·(t-waste)1)
China

Annual Report on China’s Comprehensive Utilization of Resources 2014, NDRC, China

Japan

Recycle book 2015, JEMAI

China Reference Japan Reference
Ferrous scrap 44.20 44.00 2.190 [30] 1.652 [31]
Nonferrous metal 6.87 5.00 3.450 [32] 0.671 JEMAI, 2015

Recycle book 2015, JEMAI

Paper 44.72 17.04 0.405 NDRC, 2016

Guidelines for the accounting and reporting of greenhouse gas emissions from papermaking and paper products manufacturing companies (for trial implementation). 2015, http://www.ccchina.org.cn/Detail.aspx?newsId=56605&TId=60

0.950 Japan Paper Association,, 2013

Japan Paper Association. Life cycle CO2 emissions in the paper-cardboard production. 2013

Plastic 24.88 7.44 1.500 UNEP, 2011

UNEP. Technical guidelines for the environmentally sound management of used tires. 2011

0.513 MOEJ, 2017

Japan Ministry of the Environment, Japan. Calculation of greenhouse gas emissions through supply chain. 2017

Textile 3.00 0.25 0.313 UNEP, 2011

UNEP. Technical guidelines for the environmentally sound management of used tires. 2011

0.313 UNEP, 2011

UNEP. Technical guidelines for the environmentally sound management of used tires. 2011

Wood 49.00 6.92 0.243 UNEP, 2011

UNEP. Technical guidelines for the environmentally sound management of used tires. 2011

0.243 UNEP, 2011

UNEP. Technical guidelines for the environmentally sound management of used tires. 2011

Tab.3  
Fig.5  
Fig.6  
1 Li Z, Dai H, Sun L, Xie Y, Liu Z, Wang P, Yabar H. Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China. Energy Policy, 2018, 113: 9–19
https://doi.org/10.1016/j.enpol.2017.10.048
2 IPCC. Climate Change 2014 Synthesis Report Summary for Policymakers. Geneva, Switzerland: IPCC, 2014
3 Gentil E, Christensen T H, Aoustin E. Greenhouse gas accounting and waste management. Waste Management & Research, 2009, 27(8): 696–706
https://doi.org/10.1177/0734242X09346702 pmid: 19808731
4 Sun L, Li H, Dong L, Fang K, Ren J, Geng Y, Fujii M, Zhang W, Zhang N, Liu Z. Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resources, Conservation and Recycling, 2017, 119: 78–88
https://doi.org/10.1016/j.resconrec.2016.06.007
5 Chen X, Fujita T, Ohnishi S, Fujii M, Geng Y. The impact of scale, recycling boundary, and type of waste on symbiosis and recycling. Journal of Industrial Ecology, 2012, 16(1): 129–141
https://doi.org/10.1111/j.1530-9290.2011.00422.x
6 Jin R, Li B, Zhou T, Wanatowski D, Piroozfar A. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resources, Conservation and Recycling, 2017, 126: 86–98
https://doi.org/10.1016/j.resconrec.2017.07.034
7 Berkel R V, Fujita T, Hashimoto S, Fujii M. Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environmental Science & Technology (ACS Publications), 2009, 43(5): 1271–1281
8 Fujii M, Fujita T, Chen X, Ohnishi S, Yamaguchi N. Smart recycling of organic solid wastes in an environmentally sustainable society. Resources, Conservation and Recycling, 2012, 63: 1–8
https://doi.org/10.1016/j.resconrec.2012.03.002
9 Liang H, Dong L, Luo X, Ren J, Zhang N, Gao Z, Dou Y. Balancing regional industrial development: analysis on regional disparity of China’s industrial emissions and policy implications. Journal of Cleaner Production, 2016, 126: 223–235
https://doi.org/10.1016/j.jclepro.2016.02.145
10 Brunner P H, Rechberger H. Waste to energy–key element for sustainable waste management. Waste management, 2015, 37: 3–12
https://doi.org/10.1016/j.wasman.2014.02.003
11 Generowicz A, Kulczycka J, Kowalski Z, Banach M. Assessment of waste management technology using BATNEEC options, technology quality method and multi-criteria analysis. Journal of Environmental Management, 2011, 92(4): 1314–1320
https://doi.org/10.1016/j.jenvman.2010.12.016 pmid: 21232845
12 Hoklis C, Sharp A. Comparison of GHG emission from municipal solid waste management technology in selected cities in Cambodia. Advanced Materials Research, 2014, 931–932: 645–649
https://doi.org/10.4028/www.scientific.net/AMR.931-932.645
13 Zhuang Y, Wu S W, Wang Y L, Wu W X, Chen Y X. Source separation of household waste: a case study in China. Waste Management, 2008, 28(10): 2022–2030
https://doi.org/10.1016/j.wasman.2007.08.012 pmid: 17920856
14 Cheng H, Zhang Y, Meng A, Li Q. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city. Environmental Science & Technology, 2007, 41(21): 7509–7515
https://doi.org/10.1021/es071416g pmid: 18044534
15 Wen X, Luo Q, Hu H, Wang N, Chen Y, Jin J, Hao Y, Xu G, Li F, Fang W. Comparison research on waste classification between China and the EU, Japan, and the USA. Journal of Material Cycles and Waste Management, 2014, 16(2): 321–334
https://doi.org/10.1007/s10163-013-0190-1
16 Dong H, Ohnishi S, Fujita T, Geng Y, Fujii M, Dong L. Achieving carbon emission reduction through industrial & urban symbiosis: a case of Kawasaki. Energy, 2014, 64: 277–286
https://doi.org/10.1016/j.energy.2013.11.005
17 Long Y, Yoshida Y. Quantifying city-scale emission responsibility based on input-output analysis – insight from Tokyo, Japan. Applied Energy, 2018, 218: 349–360
https://doi.org/10.1016/j.apenergy.2018.02.167
18 Schleussner C F, Rogelj J, Schaeffer M, Lissner T, Licker R, Fischer E M, Knutti R, Levermann A, Frieler K, Hare W. Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 2016, 6(9): 827–835
https://doi.org/10.1038/nclimate3096
19 Guerrero LA, Maas G, Hogland W. Solid waste management challenges for cities in developing countries. Waste management, 2013, 33(1): 220–232
https://doi.org/10.1016/j.wasman.2012.09.008
20 Marshall R E, Farahbakhsh K. Systems approaches to integrated solid waste management in developing countries. Waste Management, 2013, 33(4): 988–1003
https://doi.org/10.1016/j.wasman.2012.12.023 pmid: 23360772
21 Tan S T, Lee C T, Hashim H, Ho W S, Lim J S. Optimal process network for municipal solid waste management in Iskandar Malaysia. Journal of Cleaner Production, 2014, 71: 48–58
https://doi.org/10.1016/j.jclepro.2013.12.005
22 Dong H, Geng Y, Xi F, Fujita T. Carbon footprint evaluation at industrial park level: a hybrid life cycle assessment approach. Energy Policy, 2013, 57: 298–307
https://doi.org/10.1016/j.enpol.2013.01.057
23 National Bureau of Statistics of China. China Statistic Yearbook. Beijing: China Statistic Press, 2016
24 Wang Y, Zhu Q, Geng Y. Trajectory and driving factors for GHG emissions in the Chinese cement industry. Journal of Cleaner Production, 2013, 53: 252–260
https://doi.org/10.1016/j.jclepro.2013.04.001
25 IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. 2014–9–21,
26 Fujii M, Fujita T, Dong L, Lu C, Geng Y, Behera S K, Park H S, Chiu A S F. Possibility of developing low-carbon industries through urban symbiosis in Asian cities. Journal of Cleaner Production, 2016, 114: 376–386
https://doi.org/10.1016/j.jclepro.2015.04.027
27 Liu G, Hao Y, Dong L, Yang Z, Zhang Y, Ulgiati S. An emergy-LCA analysis of municipal solid waste management. Resources, Conservation and Recycling, 2017, 120: 131–143
https://doi.org/10.1016/j.resconrec.2016.12.003
28 Yang N, Zhang H, Chen M, Shao L-M, He P-J. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Waste Management, 2012, 32(12): 2552–2560
https://doi.org/10.1016/j.wasman.2012.06.008
29 Fujii M, Fujita T, Dong L, Lu C, Geng Y, Behera S K, Park H S, Chiu A S F. Possibility of developing low-carbon industries through urban symbiosis in Asian cities. Journal of Cleaner Production, 2016, 114: 376–386
https://doi.org/10.1016/j.jclepro.2015.04.027
30 Wang K, Wang C, Lu X, Chen J. Scenario analysis on CO2 emissions reduction potential in China’s iron and steel industry. Energy Policy, 2007, 35(4): 2320–2335
https://doi.org/10.1016/j.enpol.2006.08.007
31 Gielen D, Moriguchi Y. CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials. Energy Policy, 2002, 30(10): 849–863
https://doi.org/10.1016/S0301-4215(01)00143-4
32 Yanjia W, Chandler W. The Chinese nonferrous metals industry—energy use and CO2 emissions. Energy Policy, 2010, 38(11): 6475–6484
https://doi.org/10.1016/j.enpol.2009.03.054
33 Chung S S, Lo C W. Local waste management constraints and waste administrators in China. Waste Management, 2008, 28(2): 272–281
https://doi.org/10.1016/j.wasman.2006.11.013 pmid: 17280826
34 Chen X, Geng Y, Fujita T. An overview of municipal solid waste management in China. Waste Management, 2010, 30(4): 716–724
https://doi.org/10.1007/s10163-011-0024-y
35 Eriksson O, Finnveden G, Ekvall T, Björklund A. Life cycle assessment of fuels for district heating: a comparison of waste incineration, biomass-and natural gas combustion. Energy Policy, 2007, 35(2): 1346–1362
https://doi.org/10.1016/j.enpol.2006.04.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed