Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (3): 452-462   https://doi.org/10.1007/s11708-020-0681-4
  研究论文 本期目录
为中间介质气化器(IFV)在多种工作条件下的性能模拟
王博杰1, 王文1(), 齐超1, 匡以武1, 许佳伟2
1. 上海交通大学
2. 中海油气电集团技术研发中心
Simulation of performance of intermediate fluid vaporizer under wide operation conditions
Bojie WANG1, Wen WANG1(), Chao QI1, Yiwu KUANG1, Jiawei XU2
1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
2. CNOOC Gas and Power Group, Beijing 100027, China
 全文: PDF(1357 KB)   HTML
摘要:

液化天然气因其高效、清洁、安全等优点在能源石油化工工业中广泛应用,在运输和储存中有较多优势的液化天然气在使用中需要进行气化处理,中间介质气化器由于其结构紧凑、水质要求低、不结冰等优势属于LNG接收站主要气化设备之一。中间介质气化器由三个管壳式换热器组成,分别为冷凝器、蒸发器以及调温器。冷凝器与蒸发器共用一个壳层,LNG与海水通过壳层里的中间介质间接换热,中间介质可以是丙烷、乙二醇、丙烯等。论文作者建立了一维分布参数模型,对各种工况下的IFV性能进行了研究,对额定工况的研究中,完成了一部分尺寸参数的优化。对极端工况的研究中,阐述了IFV的局限性,并给出了应对策略;此外,作者还讨论了调温器在IFV中的重要性,以及缺少调温器的IFV在一些特殊极端条件中的应用。

Abstract

The intermediate fluid vaporizer (IFV) is a typical vaporizer of liquefied natural gas (LNG), which in general consists of three shell-and-tube heat exchangers (an evaporator, a condenser, and a thermolator). LNG is heated by seawater and the intermediate fluid in these heat exchangers. A one-dimensional heat transfer model for IFV is established in this paper in order to investigate the influences of structure and operation parameters on the heat transfer performance. In the rated condition, it is suggested to reduce tube diameters appropriately to get a large total heat transfer coefficient and increase the tube number to ensure the sufficient heat transfer area. According to simulation results, although the IFV capacity is much larger than the simplified-IFV (SIFV) capacity, the mode of SIFV could be recommended in some low-load cases as well. In some cases at high loads exceeding the capacity of a single IFV, it is better to add an AAV or an SCV operating to the IFV than just to increase the mass flow rate of seawater in the IFV in LNG receiving terminals.

Key wordsliquefied natural gas    intermediate fluid vapo-rizer    heat transfer performance    numerical simulation    extreme condition
收稿日期: 2019-07-24      出版日期: 2020-09-14
通讯作者: 王文     E-mail: wenwang@sjtu.edu.cn
Corresponding Author(s): Wen WANG   
 引用本文:   
王博杰, 王文, 齐超, 匡以武, 许佳伟. 为中间介质气化器(IFV)在多种工作条件下的性能模拟[J]. Frontiers in Energy, 2020, 14(3): 452-462.
Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions. Front. Energy, 2020, 14(3): 452-462.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0681-4
https://academic.hep.com.cn/fie/CN/Y2020/V14/I3/452
Fig.1  
Fig.2  
Fig.3  
Heat exchanger Zone Correlations Ref.
Evaporator Inside tube Nu=0.023Re0.8Pr0.3 [17]
Outside tube h=90 q0.67M 0.5Pr n( lgPr) 0.55 [18]
Condenser Inside tube Nu=0.0156Re0.82Pr0.5( ρwρb)0.3( c¯p cpb)n
n={0.4,for?Tb<T w<Tpc?and?for?1.2 Tpc<Tb<T w0.4+0.2(TwT pc1), for? Tb<Tpc<T w0.4+0.2(TwT pc1)[15( TbTpc 1)],for?Tpc<T b<1.2Tpc?and?Tb< Tw
c¯ p= TbTwdT/(Tw T b) =(h whb)/(T w Tb)
[15]
Outside tube h=0.79[ Gρl( ρl ρg)λ3r μlD (T po TW)]0.25?N eff1/6 [16,19]
Thermolator Inside tube Nu=0.023Re0.8Pr0.3 [17]
Outside tube Nu f={ 1.04Ref0.4Prf 0.36 (Prf/Prw)0.25,1<Re<5×1020.71 Re f0.5 Prf0.36( Pr f/ Pr w)0.25,5×102 <Re< 10 3 0.35( s1 s2)0.2 Ref0.6Prf0.36( Prf/ Prw)0.25, s1s22, 103<Re<2×1050.4 Re f0.6 Prf0.36 (Prf/Prw) 0.25,s1s 2>2, 103<Re<2×105 ?0.031 (s1s 2)0.2 Re f0.8 Prf0.36 (Prf/Prw) 0.25,2×105<Re<2×106 [20]
Tab.1  
Item Evaporator Condenser Thermolator
Number of tubes 3000 881 3200
Length of each tube/m 9.0 18.0 3.6
Outside diameter of tube/mm 19.05 15.90 19.05
Thickness of tube wall/mm 1.2 1.6 1.8
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Case LNG mass flow rate/(t·h–1) LNG pressure/MPa
Case 1 175 6.3
Case 2 175 7.15
Case 3 175 × 1.05 6.3
Case 4 175 × 1.05 7.15
Tab.3  
TL1/K PL/MPa m˙ L/ (t·h1) TS1/K PS/Mpa m˙ S/ (t·h1)
113.15 6 180 281.15 0.2 8750
Tab.4  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Load/(t·h–1) T2/°C T3/°C Total heat exchange/MW Heat exchange in thermolator/kW Total pressure drop/kPa Pressure drop in thermolator/kPa
100 –0.40 6.46 19.84 566.88 71.89 31.21
90 0.59 6.79 17.92 379.32 58.01 25.18
80 1.49 7.01 15.98 283.77 45.96 19.87
70 2.31 7.12 14.03 254.24 35.29 15.22
60 3.11 7.34 12.06 218.43 25.23 11.80
Tab.5  
Fig.15  
Fig.16  
T Temperature/K
P Pressure/MPa
m ˙ Mass flow rate/(kg·s–1)
ρ Density/(kg·m–3)
c Specific heat capacity/(kJ·kg–1·K–1)
λ Thermal conductivity/(W·m–1·K–1)
μ Dynamic viscosity/(Pa·s)
Re Reynolds number
Pr Prandtl number
Nu Nusselt number
G Gravitational acceleration/(m·s–2)
Q ˙ Heat flux/W
H Enthalpy/(J·kg–1)
α Heat transfer coefficient/(W·m–2·K–1)
A Area/m2
q Heat flux/(W·m–2)
r Heat of vaporization(J·kg–1)
cp Heat capacity/(J·kg–1·K)
cpb Average heat capacity/(J·kg–1·K)
M Mass flow rate/(kg·s–1)
n Constant
s1 Horizontal distance between neighboring tubes/m
s2 Vertical distance between neighboring tubes/m
D Diameter/m
Subscript
L LNG or NG
S Seawater
po Propane
th Thermolator
ev Evaporator
con Condenser
in Based on the inside tube
out Based on the outside tube
w Based on the tube wall
p Constant pressure
l Based on saturated liquid
g Based on saturated vapor
f Based on fluid
b Average value
pc Pseudo-critical value
eff Effective
  
1 T Dendy, R Nanda. Utilization of atmospheric heat exchangers in LNG vaporization processes: a comparison of systems and methods. In: AIChE Spring Meeting and 235th ACS National Meeting, New Orleans, LA, 2008
2 M Iwasaki, S Egashira, T Oda, K Asada, K Sugino. Intermediate fluid type vaporizer, and natural gas supply method using the vaporizer. US Patent: 6164247, 2000
3 M Iwasaki, K Asada. Intermediate fluid type vaporizer. US Patent: 6367429, 2002
4 C K Groothuis, I Tanaeva. Method and apparatus for vaporizing a liquid stream. US Patent: 9103498, 2015
5 S Xu, Q Cheng, L Zhuang, B Tang, Q Ren, X Zhang. LNG vaporizers using various refrigerants as intermediate fluid: comparison of the required heat transfer area. Journal of Natural Gas Science and Engineering, 2015, 25: 1–9
https://doi.org/10.1016/j.jngse.2015.04.031
6 E L Solberg. A comparative analysis of propane and ethylene glycol as intermediate fluid in a LNG regasification system. Norwegian University of Science and Technology, 2015
7 L Pu, Z Qu, Y Bai, D Qi, K Song, P Yi. Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas. Applied Thermal Engineering, 2014, 65(1–2): 564–574
https://doi.org/10.1016/j.applthermaleng.2014.01.031
8 S Xu, X Chen, Z Fan. Thermal design of intermediate fluid vaporizer for subcritical liquefied natural gas. Journal of Natural Gas Science and Engineering, 2016, 32: 10–19
https://doi.org/10.1016/j.jngse.2016.04.031
9 S Xu, X Chen, Z Fan. Design of intermediate fluid vaporizer for liquefied natural gas: a review. Chemical Engineering & Techno-logy, 2017, 40(3): 428–438
https://doi.org/10.1002/ceat.201500740
10 B J Wang, Y W Kuang, C Qi, W Wang, J W Xu, Y Huang. Analysis of heat transfer to supercritical LNG in intermediate fluid vaporizer. Journal of Chemical Industry and Engineering (China), 2015, 66(S2): 220–225 (in Chinese)
11 D Y Kim, T H Sung, K C Kim. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system. Energy, 2016, 105: 57–69
https://doi.org/10.1016/j.energy.2015.10.056
12 F Liu, Y Dai, W Wei. Feasibility of intermediate fluid vaporizer with spiral wound tubes. China Petroleum Processing and Petrochemical Technology, 2013, 15(1): 73–77
13 J D Jackson. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors. In: Proceedings of the 13th Pacific Basin Nuclear Conference, Shenzhen, China, 2002: 21–25
14 I L Pioro, H F Khartabil, R B Duffey. Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey). Nuclear Engineering and Design, 2004, 230(1–3): 69–91
https://doi.org/10.1016/j.nucengdes.2003.10.010
15 Y Z Wang, Y X Hua, H. MengNumerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane. Journal of thermophysics and heat transfer, 2010, 24(3): 490–500
https://doi.org/10.2514/1.46769
16 K Nikitin, Y Kato, T Ishizuka. Steam condensing-liquid CO2 boiling heat transfer in a steam condenser for a new heat recovery system. International Journal of Heat and Mass Transfer, 2008, 51(17–18): 4544–4550
https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.028
17 F Dittus, L Boelter. Heat transfer in automobile radiators of the tubular type. International Journal of Heat and Mass Transfer, 1930, 2: 443–461
https://doi.org/10.1016/0735-1933(85)90003-X
18 M G Cooper. Saturation nucleate pool boiling—a simple correlation. In: 1st UK National Conference on Heat Transfer, 1984, 86: 785–793
https://doi.org/10.1016/B978-0-85295-175-0.50013-8
19 D Jung, S Chae, D Bae, S Oho. Condensation heat transfer coefficients of flammable refrigerants. International Journal of Refrigeration, 2004, 27(3): 314–317
https://doi.org/10.1016/j.ijrefrig.2003.09.006
20 A Žukauskas. Heat transfer from tubes in crossflow. Advances in Heat Transfer, 1972, 8: 93–160
https://doi.org/10.1016/S0065-2717(08)70038-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed