Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (3): 317-319   https://doi.org/10.1007/s11708-023-0888-2
  本期目录
The world’s first offshore wind power non-desalination of seawater in situ electrolysis for hydrogen production successfully tested in Fujian, China
Ruiqin LIU()
 全文: PDF(1235 KB)   HTML
收稿日期: 2023-06-14      出版日期: 2023-08-09
Corresponding Author(s): Ruiqin LIU   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(3): 317-319.
Ruiqin LIU. The world’s first offshore wind power non-desalination of seawater in situ electrolysis for hydrogen production successfully tested in Fujian, China. Front. Energy, 2023, 17(3): 317-319.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0888-2
https://academic.hep.com.cn/fie/CN/Y2023/V17/I3/317
Fig.1  
Fig.2  
1 University Publicity Department Shenzhen. Led by Academician Heping Xie of Shenzhen University, the world’s first offshore wind power direct seawater electrolyser for hydrogen generation has been successfully tested in Fujian. 2023-6-2, available at website of Shenzhen University (in Chinese)
2 PosHYdon. About PosHYdon. 2023-6-6, available at website of PosHYdon
3 Gamesa Siemens. Green hydrogen unlocked: Brande hydrogen. 2023-6-6, available at website of Siemens Gamesa
4 Overdick Tractebel. Large-scale offshore hydrogen production. 2023-6-6, available at website of Tractebel Overdick
5 L Williams. Electrolysis of sea water. In: Veziroğlu T N, ed. Hydrogen Energy. New York: Plenum Press, 1975
6 Y Kuang, M J Kenney, Y T Meng. et al.. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629
https://doi.org/10.1073/pnas.1900556116
7 J W Miao, F X Xiao, H B Yang. et al.. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259
https://doi.org/10.1126/sciadv.1500259
8 F Sun, J S Qin, Z Y Wang. et al.. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nature Communications, 2021, 12(1): 4182
https://doi.org/10.1038/s41467-021-24529-3
9 S Dresp, T Ngo Thanh, M Klingenhof. et al.. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729
https://doi.org/10.1039/D0EE01125H
10 H P Xie, Z Y Zhao, T Liu. et al.. A membrane-based seawater electrolyser for hydrogen generation. Nature, 2022, 612(7941): 673–678
https://doi.org/10.1038/s41586-022-05379-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed