Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (3): 320-323   https://doi.org/10.1007/s11708-023-0889-1
  本期目录
Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems
Li REN, Yinghui LI, Xi LIN, Wenjiang DING, Jianxin ZOU()
 全文: PDF(3040 KB)   HTML
收稿日期: 2023-06-15      出版日期: 2023-08-09
Corresponding Author(s): Jianxin ZOU   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(3): 320-323.
Li REN, Yinghui LI, Xi LIN, Wenjiang DING, Jianxin ZOU. Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems. Front. Energy, 2023, 17(3): 320-323.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0889-1
https://academic.hep.com.cn/fie/CN/Y2023/V17/I3/320
Fig.1  
Fig.2  
Fig.3  
1 M van der Spek, C Banet, C Bauer. et al.. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy & Environmental Science, 2022, 15(3): 1034–1077
https://doi.org/10.1039/D1EE02118D
2 L Ren, Y Li, N Zhang. et al.. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications. Nano-Micro Letters, 2023, 15(1): 93
https://doi.org/10.1007/s40820-023-01041-5
3 C H Shin, H Y Lee, C Gyan-Barimah. et al.. Magnesium: Properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews, 2023, 52(6): 2145–2192
https://doi.org/10.1039/D2CS00810F
4 Z Li, Y Sun, C Zhang. et al.. Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications. Journal of Materials Science and Technology, 2023, 141: 221–235
https://doi.org/10.1016/j.jmst.2022.08.047
5 N Mac Dowell, N Sunny, N Brandon. et al.. The hydrogen economy: A pragmatic path forward. Joule, 2021, 5(10): 2524–2529
https://doi.org/10.1016/j.joule.2021.09.014
6 Y Zhang, S Wu, L Wang. et al.. Chemisorption solid materials for hydrogen storage near ambient temperature: A review. Frontiers in Energy, 2023, 17(1): 72–101
https://doi.org/10.1007/s11708-022-0835-7
7 Y KimX DongS Chae, et al.. Ultrahigh-porosity MgO microparticles for heat-energy storage. Advanced Materials, 2022, online, https://doi.org/10.1002/adma.202204775
8 E Mastronardo, L Bonaccorsi, Y Kato. et al.. Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Applied Energy, 2016, 162: 31–39
https://doi.org/10.1016/j.apenergy.2015.10.066
9 P Zhou, I A Navid, Y Ma. et al.. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature, 2023, 613(7942): 66–70
https://doi.org/10.1038/s41586-022-05399-1
10 H Nishiyama, T Yamada, M Nakabayashi. et al.. Photocatalytic solar hydrogen production from water on a 100 m2 scale. Nature, 2021, 598(7880): 304–307
https://doi.org/10.1038/s41586-021-03907-3
11 W F Shangguan, A Kudo, Z Jiang. et al.. Photocatalysis: From solar light to hydrogen energy. Frontiers in Energy, 2021, 15(3): 565–567
https://doi.org/10.1007/s11708-021-0784-6
12 F Xiao, Y C Wang, Z P Wu. et al.. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Advanced Materials, 2021, 33(50): 2006292
https://doi.org/10.1002/adma.202006292
13 A G Olabi, M A Abdelkareem, M Al-Murisi. et al.. Recent progress in green ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 2023, 277: 116594
https://doi.org/10.1016/j.enconman.2022.116594
14 S K Singh, S K Verma, R Kumar. Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system. Journal of Energy Storage, 2022, 48: 103977
https://doi.org/10.1016/j.est.2022.103977
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed