|
|
|
Human power-based energy harvesting strategies for mobile electronic devices |
Dewei JIA1, Jing LIU2,3( ) |
| 1. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; 3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Energy problems arise with the proliferation of mobile electronic devices, which range from entertainment tools to life saving medical instruments. The large amount of energy consumption and increasing mobility of electronic devices make it urgent that new power sources should be developed. It has been gradually recognized that the human body is highly flexible in generating applicable power from sources of heat dissipation, joint rotation, enforcement of body weight, vertical displacement of mass centers, and even elastic deformation of tissues and other attachments. These basic combinations of daily activities or metabolic phenomena open up possibilities for harvesting energy which is strong enough to power mobile or even implantable medical devices which could be used for a long time or be recharged permanently. A comprehensive review is presented in this paper on the latest developed or incubating electricity generation methods based on human power which would serve as promising candidates for future mobile power. Thermal and mechanical energy, investigated more thoroughly so far, will particularly be emphasized. Thermal energy relies on body heat and employs the property of thermoelectric materials, while mechanical energy is generally extracted in the form of enforcement or displacement excitation. For illustration purposes, the piezoelectric effect, dielectric elastomer and the electromagnetic induction couple, which can convert force directly into electricity, were also evaluated. Meanwhile, examples are given to explain how to adopt inertia generators for converting displacement energy via piezoelectric, electrostatic, electromagnetic or magnetostrictive vibrators. Finally, future prospects in harvesting energy from human power are made in conclusion.
|
| Keywords
mobile electronic device
human power
energy harvesting
micro/miniaturized generator
battery
green energy
|
|
Corresponding Author(s):
LIU Jing,Email:jliu@cl.cryo.ac.cn
|
|
Issue Date: 05 March 2009
|
|
| 1 |
Ezzati M, Lopez A D, Rodgers A. Comparative quantification of health risks: Global and regional burden of disease due to selected major risk factors. Lancet , 2002, 360(9343): 1347-1360 doi: 10.1016/S0140-6736(02)11403-6
|
|
Ezzati M, Lopez A D, Rodgers A. Comparative quantificationof health risks: Global and regional burden of disease due to selectedmajor risk factors. Lancet, 2002, 360(9343): 1347―1360
doi: 10.1016/S0140-6736(02)11403-6
|
| 2 |
Jones C E, Sivalingam K M, Agrawal P, . A survey of energy efficient network protocols for wireless networks. Wireless Networks , 2001, 7(4): 343-358 doi: 10.1023/A:1016627727877
|
|
Jones C E, Sivalingam K M, Agrawal P, et al. A survey of energyefficient network protocols for wireless networks. Wireless Networks, 2001, 7(4): 343―358
doi: 10.1023/A:1016627727877
|
| 3 |
Lin C-H, Liu J-C, Liao C-W. Energy consumption analysis of audio applications on mobile handheld devices. In: 2007 IEEE Region 10 Conference, Taipei: IEEE . 2007, 1-4
|
|
Lin C-H, Liu J-C, Liao C-W. Energy consumption analysis of audio applications onmobile handheld devices. In: 2007 IEEERegion 10 Conference, Taipei: IEEE. 2007, 1―4
|
| 4 |
Gerosa A, Maniero A, Neviani A. A fully integrated two-channel a/d interface for the acquisition of cardiac signals in implantable pacemakers. IEEE Journal of Solid-State Circuits , 2004, 39(7): 1083-1093 doi: 10.1109/JSSC.2004.829921
|
|
Gerosa A, Maniero A, Neviani A. A fully integrated two-channela/d interface for the acquisition of cardiac signals in implantablepacemakers. IEEE Journal of Solid-StateCircuits, 2004, 39(7): 1083―1093
doi: 10.1109/JSSC.2004.829921
|
| 5 |
Kelly S K,Wyatt J L. Low power neural stimulator for a retinal prosthesis. ARVO , 2004, 45(5): 4174-4174
|
|
Kelly S K,Wyatt J L. Low power neural stimulatorfor a retinal prosthesis. ARVO, 2004, 45(5): 4174―4174
|
| 6 |
Groning R, Remmerbach S, Jansen A C. Telemedicine: insulin pump controlled via the global system for mobile communications (GSM). International Journal of Pharmaceutics , 2007, 339(1-2): 61-65 doi: 10.1016/j.ijpharm.2007.02.017
|
|
Groning R, Remmerbach S, Jansen A C. Telemedicine: insulin pumpcontrolled via the global system for mobile communications (GSM). International Journal of Pharmaceutics, 2007, 339(1―2): 61―65
doi: 10.1016/j.ijpharm.2007.02.017
|
| 7 |
Rabaey K, Lissens G, Siciliano S D, . A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters , 2003, 25(18): 1531-1535 doi: 10.1023/A:1025484009367
|
|
Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuelcell capable of converting glucose to electricity at high rate andefficiency. Biotechnology Letters, 2003, 25(18): 1531―1535
doi: 10.1023/A:1025484009367
|
| 8 |
Justin G A, Zhang Y, Sun M, . Biofuel cells: A possible power source for implantable electronic devices. 2004 Conference Proceedings 26th Annual International Conference of the Engineering in Medicine and Biology Society , 2004, 6(2): 4096-4099
|
|
Justin G A, Zhang Y, Sun M, et al. Biofuel cells: A possible power source for implantableelectronic devices. 2004 Conference Proceedings26th Annual International Conference of the Engineering in Medicineand Biology Society, 2004, 6(2): 4096―4099
|
| 9 |
Maisel W H, Sweeney M O, Stevenson W G, . Recalls and safety alerts involving pacemakers and implantable cardioverter-defibrillator generators. Am Med Assoc , 2001, 286(7): 793-799 doi: 10.1001/jama.286.7.793
|
|
Maisel W H, Sweeney M O, Stevenson W G, et al. Recalls and safetyalerts involving pacemakers and implantable cardioverter-defibrillatorgenerators. Am Med Assoc, 2001, 286(7): 793―799
doi: 10.1001/jama.286.7.793
|
| 10 |
Lal A D, Li R H. Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing , 2005, 4(1): 53-61 doi: 10.1109/MPRV.2005.21
|
|
Lal A D, Li R H. Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing, 2005, 4(1): 53―61
doi: 10.1109/MPRV.2005.21
|
| 11 |
Epstein A H. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. Journal of Engineering for Gas Turbines and Power , 2004, 126(2): 205-206 doi: 10.1115/1.1739245
|
|
Epstein A H. Millimeter-scale, micro-electro-mechanicalsystems gas turbine engines. Journal ofEngineering for Gas Turbines and Power, 2004, 126(2): 205―206
doi: 10.1115/1.1739245
|
| 12 |
Tanaka S, Chang KS, Min KB, . Mems-based components of a miniature fuel cell/fuel reformer system. Chemical Engineering Journal , 2004, 101(1-3): 143-149 doi: 10.1016/j.cej.2004.01.017
|
|
Tanaka S, Chang KS, Min KB, et al. Mems-based componentsof a miniature fuel cell/fuel reformer system. Chemical Engineering Journal, 2004, 101(1―3): 143―149
doi: 10.1016/j.cej.2004.01.017
|
| 13 |
Li D, Chou P H. Maximizing efficiency of solar-powered systems by load matching. In: 2004 Proceedings of the International Symposium on Low Power Electronics and Design. Piscataway: IEEE , 2004, 162-167
|
|
Li D, Chou P H. Maximizing efficiency ofsolar-powered systems by load matching. In: 2004 Proceedings of the International Symposium on Low Power Electronicsand Design. Piscataway: IEEE, 2004, 162―167
|
| 14 |
Lee J B, Chen Z, Allen M G, . A high voltage solar cell array as an electrostatic MEMS power supply. 1994 IEEE Workshop on Micro Electro Mechanical Systems , 1994, 331-336
|
|
Lee J B, Chen Z, Allen M G, et al. A high voltage solar cell array as an electrostaticMEMS power supply. 1994 IEEE Workshop onMicro Electro Mechanical Systems, 1994, 331―336
|
| 15 |
Goto K, Nakagawa T, Nakamura O, . An implantable power supply with an optically rechargeable lithium battery. IEEE Transactions on Biomedical Engineering , 2001, 48(7): 830-833 doi: 10.1109/10.930908
|
|
Goto K, Nakagawa T, Nakamura O, et al. An implantable powersupply with an optically rechargeable lithium battery. IEEE Transactions on Biomedical Engineering, 2001, 48(7): 830―833
doi: 10.1109/10.930908
|
| 16 |
Pagidimarry N K, Konijeti V C. A high efficiency optical power transmitting system to a rechargeable lithium battery for all implantable biomedical devices. In: IFMBE Proceedings 15th , Berlin: Springer. 2007, 533-537
|
|
Pagidimarry N K, Konijeti V C. A high efficiency opticalpower transmitting system to a rechargeable lithium battery for allimplantable biomedical devices. In: IFMBEProceedings 15th, Berlin: Springer. 2007, 533―537
|
| 17 |
Sliski A P. Low power x-ray source with implantable probe for treatment of brain tumors. US Patent , 5369679, 11/29/1994
|
|
Sliski A P. Low power x-ray source with implantable probe for treatment of braintumors. US Patent, 5369679,
|
| 18 |
Wang G, Liu W, Bashirullah R, . A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In: IEEE International Symposium on Circuits and Systems. Piscataway: IEEE , 2004, 17-20
|
|
Wang G, Liu W, Bashirullah R, et al. A closed loop transcutaneous power transfersystem for implantable devices with enhanced stability.In: IEEE International Symposium on Circuits and Systems.Piscataway: IEEE, 2004, 17―20
|
| 19 |
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing , 2005, 4(1): 18-27 doi: 10.1109/MPRV.2005.9
|
|
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 2005, 4(1): 18―27
doi: 10.1109/MPRV.2005.9
|
| 20 |
Stevels A L N, Jansen A J. Renewable energy in portable radios, an environmental benchmarking study. Journal for Sustainable Product Design , 1998, 25(4): 577-582
|
|
Stevels A L N, Jansen A J. Renewable energy in portableradios, an environmental benchmarking study. Journal for Sustainable Product Design, 1998, 25(4): 577―582
|
| 21 |
Leonov V, Fiorini P. Thermal matching of a thermoelectric energy scavenger with the ambient. In: Proc 5th European Conf on Thermoelectrics (ECT). Ukraine: Odessa , 2007, 10-12
|
|
Leonov V, Fiorini P. Thermal matching of a thermoelectricenergy scavenger with the ambient. In: Proc 5th European Conf on Thermoelectrics (ECT). Ukraine: Odessa, 2007, 10―12
|
| 22 |
Stordeur M, Stark I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In: IEEE 16th Conference on Thermoelectrics. Dresden: IEEE , 1997, 575-577
|
|
Stordeur M, Stark I. Low power thermoelectricgenerator-self-sufficient energy supply for micro systems. In: IEEE 16th Conference on Thermoelectrics. Dresden:IEEE, 1997, 575―577
|
| 23 |
Qu W, Plotner M, Fischer W J. Micro fabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems. J Micromech Microeng , 2001, 11(2): 146-152 doi: 10.1088/0960-1317/11/2/310
|
|
Qu W, Plotner M, Fischer W J. Micro fabrication of thermoelectricgenerators on flexible foil substrates as a power source for autonomousmicrosystems. J Micromech Microeng, 2001, 11(2): 146―152
doi: 10.1088/0960-1317/11/2/310
|
| 24 |
Venkatasubramanian R, Siivola E, Colpitts T B, . Thin-film thermoelectric devices with high room-temperature figures of merit. Nature , 2001, 413(6856): 597-602 doi: 10.1038/35098012
|
|
Venkatasubramanian R, Siivola E, Colpitts T B, et al. Thin-film thermoelectric devices with high room-temperature figuresof merit. Nature, 2001, 413(6856): 597―602
doi: 10.1038/35098012
|
| 25 |
Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In: 2005 International Conference on Thermoelectrics, Piscataway: IEEE , 2005, 265-267
|
|
Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting usingsuperlattice thermoelectrics for applications in implantable medicaldevices and sensors. In: 2005 InternationalConference on Thermoelectrics, Piscataway: IEEE, 2005, 265―267
|
| 26 |
Boettner H, Schubert A, Schlereth K H, . New thermoelectric components using micro-system-technologies. Micro electro-mechanical Systems , 2004, 13(3): 414-420
|
|
Boettner H, Schubert A, Schlereth K H, et al. New thermoelectric components using micro-system-technologies. Micro electro-mechanical Systems, 2004, 13(3): 414―420
|
| 27 |
Acklin B, Schlereth K, Boettner H, . Process for producing a thermoelectric converter. US Patent 6818470. 11/16/2004
|
|
Acklin B, Schlereth K, Boettner H, et al. Process for producing a thermoelectric converter. US Patent 6818470.
|
| 28 |
Strasser M, Aigner R, Lauterbach C, . Micromachined cmos thermoelectric generators as on-chip power supply. Sensors and Actuators A: Physical , 2004, 114(2,3): 362-370
|
|
Strasser M, Aigner R, Lauterbach C, et al. Micromachined cmos thermoelectric generatorsas on-chip power supply. Sensors and ActuatorsA: Physical, 2004, 114(2,3): 362―370
|
| 29 |
Dragoman M, Dragoman D, Plana R. Modeling of rf energy sensing and harvesting using the giant thermoelectric effect in carbon nanotubes. Applied Physics Letters , 2007, 91(17): 173117 doi: 10.1063/1.2785119
|
|
Dragoman M, Dragoman D, Plana R. Modeling of rf energy sensingand harvesting using the giant thermoelectric effect in carbon nanotubes. Applied Physics Letters, 2007, 91(17): 173117
doi: 10.1063/1.2785119
|
| 30 |
Ghamaty S, Elsner N B. Quantum well thermoelectric devices. In: Nolas G S, Yang Jihui, Hogan T P, . Thermoelectric Materials 2003-Research and Applications (2003 MRS Fall Meeting). Boston, MA , 2003, 225-228
|
|
Ghamaty S, Elsner N B. Quantum well thermoelectricdevices. In: Nolas G S, Yang Jihui, Hogan T P, et al. Thermoelectric Materials 2003-Researchand Applications (2003 MRS Fall Meeting). Boston, MA, 2003, 225―228
|
| 31 |
Ghamaty S, Bass J C, Elsner N B. Quantum well thermoelectric devices and applications. Twenty-Second International Conference on Thermoelectrics ICT, Piscataway: IEEE , 2003. 563-566
|
|
Ghamaty S, Bass J C, Elsner N B. Quantum well thermoelectric devices and applications. Twenty-Second International Conference on ThermoelectricsICT, Piscataway: IEEE, 2003. 563―566
|
| 32 |
Jovanovic V, Ghamaty S. Design, fabrication and testing of energy-harvesting thermoelectric generator. In: Matsuzaki Y ed. Smart Structures and Materials 2006: Smart Structures and Integrated Systems, Nagoya Univ, Japan , 2006, 142-149
|
|
Jovanovic V, Ghamaty S. Design, fabrication and testingof energy-harvesting thermoelectric generator. In: Matsuzaki Y ed. Smart Structures and Materials 2006: Smart Structuresand Integrated Systems, Nagoya Univ, Japan, 2006, 142―149
|
| 33 |
Weber J, Potje-Kamloth K, Haase F, . Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical , 2006, 132(1): 325-330 doi: 10.1016/j.sna.2006.04.054
|
|
Weber J, Potje-Kamloth K, Haase F, et al. Coin-size coiled-uppolymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical, 2006, 132(1): 325―330
doi: 10.1016/j.sna.2006.04.054
|
| 34 |
IEEE. Standard on piezoelectricity ANSI/ IEEE standard. 1987
|
|
IEEE. Standard onpiezoelectricity ANSI/ IEEE standard. 1987
|
| 35 |
Clark W, Ramsay M. Smart material transducers as power sources for mems devices. In: Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials. Bellingham: SPIE , 2001, 429-438
|
|
Clark W, Ramsay M. Smart material transducersas power sources for mems devices. In: Proceedings of SPIE’s 8th Annual International Symposium onSmart Structures and Materials. Bellingham: SPIE, 2001, 429―438
|
| 36 |
Gonzalez J L, Rubio A, Moll F. A prospect of the piezoelectric effect to supply power to wearable electronic devices. In: Proc 4th Int Conf on Materials Engineering for Resources. Piscataway: IEEE , 2001, 202-207
|
|
Gonzalez J L, Rubio A, Moll F. A prospect of the piezoelectric effect to supply powerto wearable electronic devices. In: Proc4th Int Conf on Materials Engineering for Resources. Piscataway: IEEE, 2001, 202―207
|
| 37 |
Williams R B, Park G, Inman D J, . An overview of composite actuators with piezoceramic fibers. In: Proc IMAC-XX Conf on Structural Dynamics. Bellingham: SPIE , 2002, 1618-1624
|
|
Williams R B, Park G, Inman D J, et al. An overview of composite actuators with piezoceramicfibers. In: Proc IMAC-XX Conf on StructuralDynamics. Bellingham: SPIE, 2002, 1618―1624
|
| 38 |
Swallow L M, Luo J K, Siores E, . A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Structure , 2008, 17(2): 025017 doi: 10.1088/0964-1726/17/2/025017
|
|
Swallow L M, Luo J K, Siores E, et al. A piezoelectricfibre composite based energy harvesting device for potential wearableapplications. Smart Mater Structure, 2008, 17(2): 025017
doi: 10.1088/0964-1726/17/2/025017
|
| 39 |
Pelrine R. Dielectric elastomers: Generator made fundamentals and applications. In: Proc ISSS. Bellingham: SPIE , 2001, 148-156
|
|
Pelrine R. Dielectricelastomers: Generator made fundamentals and applications. In: Proc ISSS. Bellingham: SPIE, 2001, 148―156
|
| 40 |
Prahlad H, Kornbluh R, Pelrine R, . Polymer power: Dielectric elastomers and their applications in distributed actuation and power generation. In: Proceedings of ISSS 2005, Bellingham: SPIE , 2005. 100-107
|
|
Prahlad H, Kornbluh R, Pelrine R, et al. Polymer power: Dielectric elastomers and theirapplications in distributed actuation and power generation. In: Proceedings of ISSS 2005, Bellingham: SPIE, 2005. 100―107
|
| 41 |
Kornbluh R D, Pelrine R, Pei Q, . Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Smart Structures and Materials 2002, Bellingham: SPIE , 2002, 254-270
|
|
Kornbluh R D, Pelrine R, Pei Q, et al. Electroelastomers: Applications of dielectricelastomer transducers for actuation, generation, and smart structures. In: Smart Structures and Materials 2002, Bellingham:SPIE, 2002, 254―270
|
| 42 |
Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical , 1998, 64(1): 77-85 doi: 10.1016/S0924-4247(97)01657-9
|
|
Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymerdielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 1998, 64(1): 77―85
doi: 10.1016/S0924-4247(97)01657-9
|
| 43 |
Kymissis J, Kendall C, Paradiso J, . Parasitic power harvesting in shoes. In: Second IEEE Conf Wearable Computing, Washington DC: IEEE Computer Society , 1998, 132-139
|
|
Kymissis J, Kendall C, Paradiso J, et al. Parasitic power harvesting in shoes. In: Second IEEE Conf Wearable Computing, WashingtonDC: IEEE Computer Society, 1998, 132―139
|
| 44 |
Poulin G, Sarraute E, Costa F. Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sensors & Actuators: A Physical , 2004, 116(3): 461-471 doi: 10.1016/j.sna.2004.05.013
|
|
Poulin G, Sarraute E, Costa F. Generation of electricalenergy for portable devices comparative study of an electromagneticand a piezoelectric system. Sensors &Actuators: A Physical, 2004, 116(3): 461―471
doi: 10.1016/j.sna.2004.05.013
|
| 45 |
Saha C R, O’Donnell T, Wang N, . Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators: A Physical , 2008, 137(1): 1-7
|
|
Saha C R, O’Donnell T, Wang N, et al. Electromagnetic generator forharvesting energy from human motion. Sensorsand Actuators: A Physical, 2008, 137(1): 1―7
|
| 46 |
Rome L C, Flynn L, Goldman E M, . Generating electricity while walking with loads. Science , 2005, 309(9): 1725-1728 doi: 10.1126/science.1111063
|
|
Rome L C, Flynn L, Goldman E M, et al. Generating electricitywhile walking with loads. Science, 2005, 309(9): 1725―1728
doi: 10.1126/science.1111063
|
| 47 |
WilliamsC B, ShearwoodC, HarradineM A, . Development of an electromagnetic micro-generator. IEE Proc Circuits Devices Syst , 2001, 148 (6): 337-342 doi: 10.1049/ip-cds:20010525
|
|
Williams C B, Shearwood C, Harradine M A, et al. Development of anelectromagnetic micro-generator. IEE ProcCircuits Devices Syst, 2001, 148 (6): 337―342
doi: 10.1049/ip-cds:20010525
|
| 48 |
Stephen N G. On energy harvesting from ambient vibration. J Sound Vib , 2006, 293(1-2): 409-425 doi: 10.1016/j.jsv.2005.10.003
|
|
Stephen N G. On energy harvesting from ambient vibration. J Sound Vib, 2006, 293(1―2): 409―425
doi: 10.1016/j.jsv.2005.10.003
|
| 49 |
Bouten C V C, Koekkoek K T M, Verduin M, . A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans on Biomedical ,1997, 44(3): 136-147 doi: 10.1109/10.554760
|
|
Bouten C V C, Koekkoek K T M, Verduin M, et al. A triaxial accelerometer and portable data processing unit for theassessment of daily physical activity. IEEE Trans on Biomedical,1997, 44(3): 136―147
doi: 10.1109/10.554760
|
| 50 |
Cavallier B, Berthelot P, Ballandras S, . Energy harvesting using composite silicon/lithium niobate vibrating structures. In: 2007 IEEE Ultrasonics Symposium. New York: IEEE , 2007, 1602-1604
|
|
Cavallier B, Berthelot P, Ballandras S, et al. Energy harvesting using composite silicon/lithiumniobate vibrating structures. In: 2007IEEE Ultrasonics Symposium. New York: IEEE, 2007, 1602―1604
|
| 51 |
Roundy S. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Dissertation for PhD: University of California, Berkeley , 2003, 103
|
|
Roundy S. Energyscavenging for wireless sensor nodes with a focus on vibration toelectricity conversion. Dissertation forPhD: University of California, Berkeley, 2003, 103
|
| 52 |
Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Journal of Strain , 2004, 40(2): 49-58 doi: 10.1111/j.1475-1305.2004.00120.x
|
|
Sodano H A, Park G, Inman D J. Estimationof electric charge output for piezoelectric energy harvesting. Journal of Strain, 2004, 40(2): 49―58
doi: 10.1111/j.1475-1305.2004.00120.x
|
| 53 |
Eggborn T. Analytical models to predict power harvesting with piezoelectricmaterials. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University , 1999, 158-163
|
|
Eggborn T. Analyticalmodels to predict power harvesting with piezoelectricmaterials. Dissertation for the Doctoral Degree. Virginia:Virginia Polytechnic Institute and State University, 1999, 158―163
|
| 54 |
Ren K, Liu Y, Hofmann H, . An active energy harvesting scheme with an electroactive polymer. Applied Physics Letters , 2007, 91(13): 132910 doi: 10.1063/1.2793172
|
|
Ren K, Liu Y, Hofmann H, et al. An active energyharvesting scheme with an electroactive polymer. Applied Physics Letters, 2007, 91(13): 132910
doi: 10.1063/1.2793172
|
| 55 |
Ottman G, Hofmann H, Lesieutre G. Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode. IEEE Trans on Power Electronics , 2003, 18(2): 696-703 doi: 10.1109/TPEL.2003.809379
|
|
Ottman G, Hofmann H, Lesieutre G. Optimized piezoelectric energyharvesting circuit using stepdown converter in discontinuous conductionmode. IEEE Trans on Power Electronics, 2003, 18(2): 696―703
doi: 10.1109/TPEL.2003.809379
|
| 56 |
Lefeuvre E, Badel A, Richard C, . Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J Intell Mater Syst Struct , 2005, 16(10): 865-876 doi: 10.1177/1045389X05056859
|
|
Lefeuvre E, Badel A, Richard C, et al. Piezoelectric energyharvesting device optimization by synchronous electric charge extraction. J Intell Mater Syst Struct, 2005, 16(10): 865―876
doi: 10.1177/1045389X05056859
|
| 57 |
Ottman G, Hofmann H, Bhatt A, . Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics , 2002, 17(5): 1-8 doi: 10.1109/TPEL.2002.802194
|
|
Ottman G, Hofmann H, Bhatt A, et al. Adaptive piezoelectricenergy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics, 2002, 17(5): 1―8
doi: 10.1109/TPEL.2002.802194
|
| 58 |
Sodano H A, Park G, Inman D J. Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures , 2005, 16(1): 67-75 doi: 10.1177/1045389X05047210
|
|
Sodano H A, Park G, Inman D J. Generation and storage ofelectricity from power harvesting devices. Journal of Intelligent Material Systems and Structures, 2005, 16(1): 67―75
doi: 10.1177/1045389X05047210
|
| 59 |
Sodano H A, Park G, Inman D J. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures , 2005, 16(10): 799-807 doi: 10.1177/1045389X05056681
|
|
Sodano H A, Park G, Inman D J. Comparison of piezoelectricenergy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 799―807
doi: 10.1177/1045389X05056681
|
| 60 |
Sodano H A, Park G, Leo D J, . Model of piezoelectric power harvesting beam. In: ASME’s International Mechanical Engineering Congress and Expo. New Orleans: ASME , 2003, 15-21
|
|
Sodano H A, Park G, Leo D J, et al. Model of piezoelectric power harvesting beam. In: ASME’s International Mechanical EngineeringCongress and Expo. New Orleans: ASME, 2003, 15―21
|
| 61 |
Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest , 2004, 36(3): 197-205 doi: 10.1177/0583102404043275
|
|
Sodano H A, Inman D J, Park G. A review of power harvestingfrom vibration using piezoelectric materials. The Shock and Vibration Digest, 2004, 36(3): 197―205
doi: 10.1177/0583102404043275
|
| 62 |
Lesieutre G, Hofmann H, Ottman G. Electric power generation from piezoelectric materials. In: The 13th International Conference on Adaptive Structures and Technologies. New York: IEEE , 2002, 153-158
|
|
Lesieutre G, Hofmann H, Ottman G. Electric power generation from piezoelectric materials. In: The 13th International Conference on AdaptiveStructures and Technologies. New York: IEEE, 2002, 153―158
|
| 63 |
Santos J L, Antunes F, Chehab A, . A maximum power point tracker for pv systems using a high performance boost converter. Sol Energy , 2006, 80(7): 772-778 doi: 10.1016/j.solener.2005.06.014
|
|
Santos J L, Antunes F, Chehab A, et al. A maximum powerpoint tracker for pv systems using a high performance boost converter. Sol Energy, 2006, 80(7): 772―778
doi: 10.1016/j.solener.2005.06.014
|
| 64 |
Renaud M, Fiorini P, Hoof C. Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Mater Structure , 2007, 16(4): 1125-1135 doi: 10.1088/0964-1726/16/4/022
|
|
Renaud M, Fiorini P, Hoof C. Optimization of a piezoelectricunimorph for shock and impact energy harvesting. Smart Mater Structure, 2007, 16(4): 1125―1135
doi: 10.1088/0964-1726/16/4/022
|
| 65 |
Mateu M L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: Proc of XVIII Design of Circuits and Integrated Systems Conference, Piscataway. IEEE , 2003, 677-682
|
|
Mateu M L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-basedpower generator for autonomous wearable devices. In: Proc of XVIII Design of Circuits and Integrated Systems Conference,Piscataway. IEEE, 2003, 677―682
|
| 66 |
Wischke M, Goldschmidtboeing F, Woias P. A low cost generator concept for energy harvesting applications. In:The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Piscataway. IEEE , 2007, 875-878
|
|
Wischke M, Goldschmidtboeing F, Woias P. A low cost generator concept for energyharvesting applications. In:The 14th InternationalConference on Solid-State Sensors, Actuators and Microsystems, Piscataway.IEEE, 2007, 875―878
|
| 67 |
Meninger S, Mur-Miranda J, Amirtharajah R, . Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems . 2001, 9(1): 64-76
|
|
Meninger S, Mur-Miranda J, Amirtharajah R, et al. Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration(VLSI) Systems. 2001, 9(1): 64―76
|
| 68 |
Mitcheson P D, Green T C, Yeatman E M, . Architectures for vibration-driven micropower generators. J of Microelectromechanical Systems , 2004, 13(3): 429-440 doi: 10.1109/JMEMS.2004.830151
|
|
Mitcheson P D, Green T C, Yeatman E M, et al. Architectures for vibration-driven micropower generators. J of Microelectromechanical Systems, 2004, 13(3): 429―440
doi: 10.1109/JMEMS.2004.830151
|
| 69 |
Despesse G, Jager T, Chaillout J, . Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse , 2005, 386-390
|
|
Despesse G, Jager T, Chaillout J, et al. Fabrication and characterization of high dampingelectrostatic micro devices for vibration energy scavenging. In: Proc Design, Test, Integration and Packagingof MEMS and MOEMS. Montreux : Suisse, 2005, 386―390
|
| 70 |
Ma W, Wong M,Ruber L. Dynamic simulation of an implemented electrostatic power micro-generator. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse , 2005, 380-385
|
|
Ma W, Wong M,Ruber L. Dynamic simulation of an implemented electrostatic powermicro-generator. In: Proc Design, Test,Integration and Packaging of MEMS and MOEMS. Montreux : Suisse, 2005, 380―385
|
|
Meninger S, Mur-Miranda J, Lang J, et al. Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2001, 9(1): 64―76
|
| 72 |
Tashiro R, Kabei N, Katayama K, . Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs , 2002, 5(4): 0239-0245
|
|
Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator fora cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs, 2002, 5(4): 0239―0245
|
| 73 |
Tashiro R, Kabai N, Katayama K, . Development of an electrostatic generator that harnesses the motion of a living body. Journal of Artificial Organs , 2000, 4(3): 916-922
|
|
Tashiro R, Kabai N, Katayama K, et al. Development of an electrostatic generator thatharnesses the motion of a living body. Journal of Artificial Organs, 2000, 4(3): 916―922
|
| 74 |
Arakawa Y, Suzuki Y, Kasagi N. Micro seismic power generator using electret polymer film power. In: 2006 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul: IEEE , 2006, 37-38
|
|
Arakawa Y, Suzuki Y, Kasagi N. Micro seismic power generator using electret polymerfilm power. In: 2006 19th IEEE InternationalConference on Micro Electro Mechanical Systems. Istanbul: IEEE, 2006, 37―38
|
| 75 |
Pelrine R. ElecIroactive polymer devices. US Patent 6545384, 4/8/2003
|
|
Pelrine R. ElecIroactivepolymer devices. US Patent 6545384,
|
| 76 |
El-Hami M, Glynne P, White N, . Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A ,2001, 92(1–3): 335-342 doi: 10.1016/S0924-4247(01)00569-6
|
|
El-Hami M, Glynne P, White N, et al. Design and fabricationof a new vibration-based electromechanical power generator. Sensors Actuators A,2001, 92(1–3): 335―342
doi: 10.1016/S0924-4247(01)00569-6
|
| 77 |
Chapman P L, Krein P T. Micromotor technology: Electric drive designer’s perspective. In: Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE. Chicago: IEEE , 2001, 1978-1983
|
|
Chapman P L, Krein P T. Micromotor technology: Electricdrive designer’s perspective. In: Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE.Chicago: IEEE, 2001, 1978―1983
|
| 78 |
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical , 1996, 52(1–3): 8-11 doi: 10.1016/0924-4247(96)80118-X
|
|
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical, 1996, 52(1–3): 8―11
doi: 10.1016/0924-4247(96)80118-X
|
| 79 |
Williams CB, Shearwood C, Harradine M A, . Development of an electromagnetic micro-generator. IEE Proceedings Circuits, Devices and Systems , 2001, 148(6): 337-342 doi: 10.1049/ip-cds:20010525
|
|
Williams CB, Shearwood C, Harradine M A, et al. Development of anelectromagnetic micro-generator. IEE ProceedingsCircuits, Devices and Systems, 2001, 148(6): 337―342
doi: 10.1049/ip-cds:20010525
|
| 80 |
Mizuno M, Chetwynd D G. Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering , 2003, 13(2): 209-216 doi: 10.1088/0960-1317/13/2/307
|
|
Mizuno M, Chetwynd D G. Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering, 2003, 13(2): 209―216
doi: 10.1088/0960-1317/13/2/307
|
| 81 |
Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. In: Proc Transducers 2005, Piscataway: IEEE , 2005. 780-783
|
|
Beeby S P, Tudor M J, Koukharenko E, et al. Micromachined silicon generator for harvestingpower from vibrations. In: Proc Transducers2005, Piscataway: IEEE, 2005. 780―783
|
|
Perez-Rodriguez A, Serre C, Fondevilla N, et al. Design of electromagnetic inertial generatorsfor energy scavenging applications. In: Proc Eurosensors XIX press. Guimaraes: Eurosensors2005, 344―349
|
| 82 |
Perez-Rodriguez A, Serre C, Fondevilla N, . Design of electromagnetic inertial generators for energy scavenging applications. In: Proc Eurosensors XIX press. Guimaraes: Eurosensors 2005, 344-349
|
|
Kulah H, Najafi K. An electromagnetic micropower generator for low-frequency environmental vibrations. In: 2004 17th IEEE International Conference onMEMS. Piscataway: IEEE, 2004, 237―240
|
| 83 |
Kulah H, Najafi K. An electromagnetic micro power generator for low-frequency environmental vibrations. In: 2004 17th IEEE International Conference on MEMS. Piscataway: IEEE , 2004, 237-240
|
|
Huang W S, Tzeng K E, Cheng M C, et al. Design and fabrication of a vibrational micro-generatorfor wearable MEMS. In: Proc EurosensorsXVII. Barcelona: Eurosensors, 2003, 695―697
|
| 84 |
Huang W S, Tzeng K E, Cheng M C, . Design and fabrication of a vibrational micro-generator for wearable MEMS. In: Proc Eurosensors XVII. Barcelona: Eurosensors , 2003, 695-697
|
|
Scherrer S, Plumlee D G, Moll A J. Energy scavenging device in LTCC materials. IEEE Workshop on Microelectronics and ElectronDevices. Piscataway: IEEE, 2005, 77―78
|
| 85 |
Scherrer S, Plumlee D G, Moll A J. Energy scavenging device in LTCC materials. IEEE Workshop on Microelectronics and Electron Devices. Piscataway: IEEE , 2005, 77-78
|
| 86 |
Amirtharajah R, Chandrakasan A P, Mit C. Self-powered signal processing using vibration-based powergeneration. IEEE Journal of Solid-State Circuits , 1998, 33(5): 687-695 doi: 10.1109/4.668982
|
|
Amirtharajah R, Chandrakasan A P, Mit C. Self-poweredsignal processing using vibration-based powergeneration. IEEE Journal of Solid-State Circuits, 1998, 33(5): 687―695
doi: 10.1109/4.668982
|
| 87 |
Beeby S P, Torah R N, Tudor M J, . A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng , 2007, 17(7): 1257-1265 doi: 10.1088/0960-1317/17/7/007
|
|
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagneticgenerator for vibration energy harvesting. J Micromech Microeng, 2007, 17(7): 1257―1265
doi: 10.1088/0960-1317/17/7/007
|
| 88 |
Donnell T. Scaling effects for electromagnetic vibrational power generators. Microsystem Technology , 2007, 13(11-12): 1637-1645 doi: 10.1007/s00542-006-0363-0
|
|
Donnell T. Scaling effects for electromagnetic vibrationalpower generators. Microsystem Technology, 2007, 13(11―12): 1637―1645
doi: 10.1007/s00542-006-0363-0
|
| 89 |
Staley M, Flatau A. Characterization of energy harvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE. Bellingham: SPIE , 2005, 630-640
|
|
Staley M, Flatau A. Characterization of energyharvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE. Bellingham: SPIE, 2005, 630―640
|
| 90 |
Bayrashev A, Robbins W, Ziaie B. Low frequency wireless powering of microsystems using piezoelectricmagnetostrictive laminate composites. Sensors and Actuators A: Physical , 2004, 114(2-3 ): 244-249 doi: 10.1016/j.sna.2004.01.007
|
|
Bayrashev A, Robbins W, Ziaie B. Low frequency wireless poweringof microsystems using piezo electricmagnetostrictive laminate composites. Sensors and Actuators A: Physical, 2004, 114(2―3): 244―249
doi: 10.1016/j.sna.2004.01.007
|
| 91 |
Huang J, O’Handley R, Bono D. New, high-sensitivity, hybrid magnetostrictive/electroactive magnetic field. In: Sensors Proc SPIE. Bellingham: SPIE , 2003, 229-231
|
|
Huang J, O’Handley R, Bono D. New, high-sensitivity, hybrid magnetostrictive/electroactivemagnetic field. In: Sensors Proc SPIE.Bellingham: SPIE, 2003, 229―231
|
| 92 |
Wang L, Yuan F G. Energy harvesting by magnetostrictive material (msm) for powering.Wireless sensors in SHM. In: 2007 SPIE/ASME Best Student Paper Presentation Contest SPIE, Bellingham: SPIE , 2007, 652941
|
|
Wang L, Yuan F G. Energy harvesting by magnetostrictivematerial (msm) for powering.Wireless sensors in SHM. In: 2007 SPIE/ASME Best Student Paper Presentation Contest SPIE, Bellingham:SPIE, 2007, 652941
|
| 93 |
Mitcheson P D, Miao P, Stark B H. MEMS electrostatic micropower generator for low frequency operation. Sensors and Actuators , 2004, 115(2-3): 523-529 doi: 10.1016/j.sna.2004.04.026
|
|
Mitcheson P D, Miao P, Stark B H. MEMS electrostaticmicropower generator for low frequency operation. Sensors and Actuators, 2004, 115(2―3): 523―529
doi: 10.1016/j.sna.2004.04.026
|
| 94 |
Büren T V, Mitcheson P D, Green T C. Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal , 2006, 6(1): 18-38
|
|
Büren T V, Mitcheson P D, Green T C. Optimization of inertial micropower generators for humanwalking motion. IEEE Sensors Journal, 2006, 6(1): 18―38
|
| 95 |
Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. 2004. http://www.perpetuum.co.uk/resource
|
|
www.perpetuum.co.uk/resource
|
| 96 |
Farmer J R. A comparison of power harvesting techniques and related energy storage issues. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University , 2007, 115-115
|
|
Farmer J R. A comparison of power harvesting techniques and related energy storageissues. Dissertation for the Doctoral Degree.Virginia: Virginia Polytechnic Institute and State University, 2007, 115―115
|
| 97 |
Büren T V, Lukowicz P, Tr?ster G. Kinetic energy powered computing- an experimental feasibility study. In: Proc 7th IEEE Int Symposium on Wearable Computers. Washington DC: IEEE Computer Society , 2003, 22-24
|
|
Büren T V, Lukowicz P, Tröster G. Kinetic energy powered computing- an experimental feasibilitystudy. In: Proc 7th IEEE Int Symposiumon Wearable Computers. Washington DC: IEEE Computer Society, 2003, 22―24
|
| 98 |
Miao P, Micheson P, Holmes A, . Mems inertial power generators for biomedical applications. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Berlin: Springer , 2005, 295-298
|
|
Miao P, Micheson P, Holmes A, et al. Mems inertial power generators for biomedicalapplications. In: Proc Design, Test, Integrationand Packaging of MEMS and MOEMS. Berlin: Springer, 2005, 295―298
|
|
Micheson P, Stark B, Miao P, et al. Analysis and optimisation of mems on-chip powersupply for self powering of slow moving. In: sensors Proc Eurosensors XVII. New York: IEEE, 2003, 30―31
|
| 99 |
Micheson P, Stark B, Miao P, . Analysis and optimisation of mems on-chip power supply for self powering of slow moving. In: sensors Proc Eurosensors XVII. New York: IEEE , 2003, 30-31
|
|
Park C, Chou P H. Power utility maximizationfor multi-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design.Piscataway: IEEE, 2004, 168―173
|
| 100 |
Park C, Chou P H. Power utility maximization for multi-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design. Piscataway: IEEE , 2004, 168-173
|
| 101 |
Mitcheson P D, Reilly E K, Toh T, . Performance limits of the three MEMS inertial energy generator transduction types. J Micromech Microeng , 2007, 17(9): 211–216 doi: 10.1088/0960-1317/17/9/S01
|
|
Mitcheson P D, Reilly E K, Toh T, et al. Performancelimits of the three MEMS inertial energy generator transduction types. J Micromech Microeng, 2007, 17(9): 211–216
doi: 10.1088/0960-1317/17/9/S01
|
| 102 |
Siebert J, Collier J, Amirtharajah R. Self-timed circuits for harvesting ac power supplies. In: Proc International Symposium on Low Power Electronics and Design. New York: ACM , 2005, 315-318
|
|
Siebert J, Collier J, Amirtharajah R. Self-timed circuits for harvesting ac power supplies. In: Proc International Symposium on Low Power Electronicsand Design. New York: ACM, 2005, 315―318
|
| 103 |
Niu P, Chapman P, Riemer R, . Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 35th Annul IEEE Power Elecrronics Specialisrs Conference. Piscataway: IEEE , 2004, 2100-2106
|
|
Niu P, Chapman P, Riemer R, et al. Evaluation of motions and actuation methodsfor biomechanical energy harvesting. In: 35th Annul IEEE Power Elecrronics Specialisrs Conference. Piscataway:IEEE, 2004, 2100―2106
|
| 104 |
Yang Y, Wei X, Liu J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D: Appl Phys , 2007, 40(18): 5790-5800 doi: 10.1088/0022-3727/40/18/042
|
|
Yang Y, Wei X, Liu J. Suitability of a thermoelectricpower generator for implantable medical electronic devices. J Phys D: Appl Phys, 2007, 40(18): 5790―5800
doi: 10.1088/0022-3727/40/18/042
|
| 105 |
Strasser M, Aigner R, Franosch M,. Miniaturized thermoelectric generators based on poly-si and poly-sige surface micromachining. Sensor and Actuator A , 2002, 97–98 : 535-542 doi: 10.1016/S0924-4247(01)00815-9
|
|
Strasser M, Aigner R, Franosch M,et al. Miniaturized thermoelectricgenerators based on poly-si and poly-sige surface micromachining. Sensor and Actuator A, 2002, 97–98: 535―542
doi: 10.1016/S0924-4247(01)00815-9
|
| 106 |
Donelan J M, Li Q, Naing V,. Biomechanical energy harvesting: Henerating electricity during walking with minimal user effort. Science , 2008, 319(5864): 807-810 doi: 10.1126/science.1149860
|
|
Donelan J M, Li Q, Naing V,et al. Biomechanical energyharvesting: Henerating electricity during walking with minimal usereffort. Science, 2008, 319(5864): 807―810
doi: 10.1126/science.1149860
|
| 107 |
Fletsche R. Force transduction materials for human- technology interfaces. IBM Systems Journal , 1996-35(3-4): 630-638
|
|
Fletsche R. Forcetransduction materials for human- technology interfaces. IBM Systems Journal, 1996―35(3―4): 630―638
|
| 108 |
Starner T. Human powered wearable computing. IBM Systems Journal , 1996, 35(3-4): 618-629
|
|
Starner T. Humanpowered wearable computing. IBM SystemsJournal, 1996, 35(3―4): 618―629
|
| 109 |
Yaglioglu O. Modeling and design considerations for a micro-hydraulic piezoelectric power generator. Dissertation for the Doctoral Degree. Cambridge, Mass: Massachusetts Institute of Technology , 2002, 112-115
|
|
Yaglioglu O. Modelingand design considerations for a micro-hydraulic piezoelectric powergenerator. Dissertation for the DoctoralDegree. Cambridge, Mass: Massachusetts Institute of Technology, 2002, 112―115
|
| 110 |
Antaki J F. A gait powered autologous battery charging system for artificial organs. American Society of Artificial Internal Organs Journal , 1995, 41(3): 588-595
|
|
Antaki J F. A gait powered autologous battery charging system for artificialorgans. American Society of ArtificialInternal Organs Journal, 1995, 41(3): 588―595
|
| 111 |
Shenck N S. A demonstration of useful electric energy generation from piezoceramics in a shoe. Dissertation for the Doctoral Degree. Cambridge , Mass: Massachusetts Institute of Technology, 1999, 210-212
|
|
Shenck N S. A demonstration of useful electric energy generation from piezoceramicsin a shoe. Dissertation for the DoctoralDegree. Cambridge, Mass: Massachusetts Institute of Technology, 1999, 210―212
|
| 112 |
Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro , 2001, 21(3): 30-42 doi: 10.1109/40.928763
|
|
Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 2001, 21(3): 30―42
doi: 10.1109/40.928763
|
| 113 |
Hayashida J. Unobtrusive integration of magnetic generator systems into common footwear. Dissertation for the Doctoral Degree. Cambridge , Mass: Massachusetts Institute of Technology, 2000, 322-323
|
|
Hayashida J. Unobtrusiveintegration of magnetic generator systems into common footwear. Dissertation for the Doctoral Degree. Cambridge, Mass: MassachusettsInstitute of Technology, 2000, 322―323
|
| 114 |
Paradiso J A, Morris S J. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. Engineering in Medicine and Biology , 2002, 3(3): 2468-2469
|
|
Paradiso J A, Morris S J. Shoe-integrated sensor systemfor wireless gait analysis and real-time feedback. Engineering in Medicine and Biology, 2002, 3(3): 2468―2469
|
| 115 |
Vijayaraghavan K, Rajamani R. Active control based energy harvesting for batteryless wireless traffic sensors. In: 2007American Control Conference , New York: IEEE, 2007, 3106-3111
|
|
Vijayaraghavan K, Rajamani R. Active control based energyharvesting for batteryless wireless traffic sensors. In: 2007American Control Conference, New York: IEEE, 2007, 3106―3111
|
| 116 |
Paradiso J, Feldmeier M. A compact, wireless, welf-powered pushbutton controller. In: 2001 Ubiquitous Computing . Berlin: Springer, 2001, 299-304
|
|
Paradiso J, Feldmeier M. A compact, wireless, welf-poweredpushbutton controller. In: 2001 UbiquitousComputing. Berlin: Springer, 2001, 299―304
|
| 117 |
Post E R. Intrabody busses for data and power. In: Proc of the First Int Symposium on Wearable Computers . Cambridge: IEEE, 1997, 52-55
|
|
Post E R. Intrabody busses for data and power. In: Proc of the First Int Symposium on Wearable Computers. Cambridge: IEEE, 1997, 52―55
|
| 118 |
Lukowicz P, Ward J A, Junker H,. Recognizing workshop activity using body worn microphones and accelerometers. In: Proc 2nd Int Conf Pervasive Computing , Berlin: Springer, 2004, 18-32
|
|
Lukowicz P, Ward J A, Junker H,et al. Recognizing workshop activity using body wornmicrophones and accelerometers. In: Proc2nd Int Conf Pervasive Computing, Berlin: Springer, 2004, 18―32
|
| 119 |
Bao L, Intille S S. Activity recognition from user-annotated acceleration data. Lecture Notes in Computer Science (Pervasive Computing) , 2004, (3001): 1-17
|
|
Bao L, Intille S S. Activity recognition fromuser-annotated acceleration data. LectureNotes in Computer Science (Pervasive Computing), 2004, (3001): 1―17
|
| 120 |
Donelan J M, Kram R, Kuo A D. Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics , 2002, 35(1): 117-124 doi: 10.1016/S0021-9290(01)00169-5
|
|
Donelan J M, Kram R, Kuo A D. Simultaneous positive andnegative external mechanical work in human walking. Journal of Biomechanics, 2002, 35(1): 117―124
doi: 10.1016/S0021-9290(01)00169-5
|
|
Kuo A D. Biophysics: Harvesting energy by improvingthe economy of human walking. Science, 2005, 309(5741): 1686―1687
doi: 10.1126/science.1118058
|
| 121 |
Kuo A D. Biophysics: Harvesting energy by improving the economy of human walking. Science , 2005, 309(5741): 1686-1687 doi: 10.1126/science.1118058
|
| 122 |
Granstrom J, Feenstra J, Sodano H A,. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures , 2007, 16(5): 1810-1820 doi: 10.1088/0964-1726/16/5/036
|
|
Granstrom J, Feenstra J, Sodano H A,et al. Energy harvestingfrom a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007, 16(5): 1810―1820
doi: 10.1088/0964-1726/16/5/036
|
| 123 |
Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing , 2008, 22(3): 721-734 doi: 10.1016/j.ymssp.2007.09.015
|
|
Feenstra J, Granstrom J, Sodano H. Energy harvesting througha backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008, 22(3): 721―734
doi: 10.1016/j.ymssp.2007.09.015
|
| 124 |
Goto H, Sugiura T, Harada Y,. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput , 1999, 37(1): 377-380 doi: 10.1007/BF02513315
|
|
Goto H, Sugiura T, Harada Y,et al. Feasibility of usingthe automatic generating system for quartz watches as a leadless pacemakerpower source. Med Biol Eng Comput, 1999, 37(1): 377―380
doi: 10.1007/BF02513315
|
| 125 |
Siores E. Detection and suppression of muscle tremors. GB(Great Britain) Patent , 0623905.7/1/2006
|
|
Siores E. Detectionand suppression of muscle tremors. GB(GreatBritain) Patent, 0623905.
|
| 126 |
Tozzi P. Method and device to convert cardiac and other body movements into electricity to power any implantable medical system. US Patent , 20070078492-A1, 4/5/2007
|
|
Tozzi P. Methodand device to convert cardiac and other body movements into electricityto power any implantable medical system. US Patent, 20070078492-A1,
|
| 127 |
Ramsey M J, Clark WW. Piezoelectric energy harvesting for bio-MEMS applications. In: Porter D L ed. Proceedings of SPIE’s 8th Annual Smart Materials and Structures Conference , Newport Beach, CA: ETATS-UNIS, 2001, 429-438
|
|
Ramsey M J, Clark WW. Piezoelectric energy harvestingfor bio-MEMS applications. In: Porter DL ed. Proceedings of SPIE’s 8th Annual Smart Materials and StructuresConference, Newport Beach, CA: ETATS-UNIS, 2001, 429―438
|
| 128 |
Myers R, Vickers M, Kim H,. Small scale windmill. Applied Physics Letters , 2007, 90: 054106 doi: 10.1063/1.2435346
|
|
Myers R, Vickers M, Kim H,et al. Small scale windmill. Applied Physics Letters, 2007, 90: 054106
doi: 10.1063/1.2435346
|
| 129 |
Courses E, Surveys T. Nanogenerators and nanopiezotronics. In: 2007 IEEE International Electron Devices Meeting , Washington: IEEE, 2007, 371-374
|
|
Courses E, Surveys T. Nanogenerators and nanopiezotronics. In: 2007 IEEE International Electron Devices Meeting, Washington: IEEE, 2007, 371―374
|
| 130 |
Gao Y, Wang Z. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics . Nano letters, 2007, 7(8): 2499-2505 doi: 10.1021/nl071310j
|
|
Gao Y, Wang Z. Electrostaticpotential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano letters, 2007, 7(8): 2499―2505
doi: 10.1021/nl071310j
|
| 131 |
Wang X, Song J, Liu J,. Direct-current nanogenerator driven by ultrasonic waves.Science , 2007, 316(5821): 102 doi: 10.1126/science.1139366
|
|
Wang X, Song J, Liu J,et al. Direct-current nanogeneratordriven by ultrasonic waves.Science, 2007, 316(5821): 102
doi: 10.1126/science.1139366
|
| 132 |
Wang Z. Self-powered nanotech. Scientific American Magazine , 2008, 298(1): 82-87
|
|
Wang Z. Self-powerednanotech. Scientific American Magazine, 2008, 298(1): 82―87
|
| 133 |
Wang Z L, Wang X, Song J,. Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Computing , 2008, 7(1): 49-55 doi: 10.1109/MPRV.2008.14
|
|
Wang Z L, Wang X, Song J,et al. Piezoelectric nanogeneratorsfor self-powered nanodevices. IEEE PervasiveComputing, 2008, 7(1): 49―55
doi: 10.1109/MPRV.2008.14
|
| 134 |
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature , 2008, 451(7180): 809-813 doi: 10.1038/nature06601
|
|
Qin Y, Wang X, Wang Z L. Microfibre–nanowirehybrid structure for energy scavenging. Nature, 2008, 451(7180): 809―813
doi: 10.1038/nature06601
|
| 135 |
Daiguji H, Yang P, Szeri A J,. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett , 2004, 4(12): 2315-2321 doi: 10.1021/nl0489945
|
|
Daiguji H, Yang P, Szeri A J,et al. Electrochemomechanical energy conversion in nanofluidicchannels. Nano Lett, 2004, 4(12): 2315―2321
doi: 10.1021/nl0489945
|
| 136 |
Yang J, Lu F, Kostiuk LW,. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng , 2003, 13(6): 963-970 doi: 10.1088/0960-1317/13/6/320
|
|
Yang J, Lu F, Kostiuk LW,et al. Electrokinetic microchannelbattery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng, 2003, 13(6): 963―970
doi: 10.1088/0960-1317/13/6/320
|
| 137 |
Perry J L, Kandlikar SG. Review of fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics , 2006, 2(3): 185-193 doi: 10.1007/s10404-005-0068-1
|
|
Perry J L, Kandlikar SG. Reviewof fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics, 2006, 2(3): 185―193
doi: 10.1007/s10404-005-0068-1
|
| 138 |
Channels N. Mass and charge transport in micro and nanofluidic channels. Nanoscale and Microscale Thermophysical Engineering , 2007, 11(1): 57-69 doi: 10.1080/15567260701337878
|
|
Channels N. Mass and charge transport in micro andnanofluidic channels. Nanoscale and MicroscaleThermophysical Engineering, 2007, 11(1): 57―69
doi: 10.1080/15567260701337878
|
| 139 |
Wu C, Jin Z, Wang H Q,. Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. Journal of Micromechanics and Microengineering , 2007, 17(12): 2393-2397 doi: 10.1088/0960-1317/17/12/001
|
|
Wu C, Jin Z, Wang H Q,et al. Design and fabrication of a nanofluidicchannel by selective thermal oxidation and etching back of silicondioxide made on a silicon substrate. Journalof Micromechanics and Microengineering, 2007, 17(12): 2393―2397
doi: 10.1088/0960-1317/17/12/001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|