Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2009, Vol. 3 Issue (2) : 198-203    https://doi.org/10.1007/s11708-009-0004-2
RESEARCH ARTICLE
Steam turbine governor modeling and parameters testing for power system simulation
Ying LI1,2(email.png), Chufeng PENG2, Zenghui YANG2
1. 1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;; 2. 2. East China Electric Power Test & Research Institute, Shanghai 200437, China
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The theoretical modeling, parameters test and model correction for a steam turbine (ST) governor are discussed. A set of ST Governor system model for power system simulation is created based on this research. A power system simulation for an actual power grid accident is conducted using this new model and the comparison between the simulation and actual data show that the results are satisfactory.

Keywords power system simulation      ST governor system      modeling      parameters testing     
Corresponding Author(s): LI Ying,Email:li_ying758@yahoo.com.cn   
Issue Date: 05 June 2009
 Cite this article:   
Ying LI,Chufeng PENG,Zenghui YANG. Steam turbine governor modeling and parameters testing for power system simulation[J]. Front Energ Power Eng Chin, 2009, 3(2): 198-203.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0004-2
https://academic.hep.com.cn/fie/EN/Y2009/V3/I2/198
Fig.1  Principal of speed governor system
Fig.2  Modern ST unit control system
Fig.3  Governor model
Fig.4  Servo-mechanism model
Fig.5  Prime mover model
Fig.6  Theory model of ST governor system
Fig.7  Simulation result under different
No.unit capacity/MWcontrol mode of HP governing valve
A300sequential
B300synchronous
C600sequential
D900synchronous
Tab.1  Four units of different type and capacity selected for governor test
Fig.8  Test corrected model of ST governor system
Fig.9  Identification result of reheater time constant
Fig.10  Power grid accident restoration result
1 Gao Hong, Zhang Jianwen, Wu Fang. Application of system identification theory in electric power system. Shanxi Electric Power , 2001, (5): 51-52 (in Chinese)
2 He Renmu. The study of generator excitation system modeling and parameters estimation. Power System Technology , 2007, 31(14): 62-67
3 Li Peizhi, Lian Hongwei. Power Plant Steam Turbine DEH System. Beijing: Electric Power Publishing of China, 2005
4 Wang Li. Application of automatic generation control system in 300 MW coal-fired power unit. Journal of North China Electric Power University , 2002, 29(1): 109-111
5 de Mello F P. Dynamic models for fossil fueled steam units in power system studies. IEEE Transaction on Power Systems , 1991, 6(2): 753-761
doi: 10.1109/59.76722
6 Pereira L, Undrill J, Kosterev D, . a new thermal governor modeling approach in the WECC. IEEE Transactions on Power Systems , 2003, 18(2): 819-829
doi: 10.1109/TPWRS.2003.811007
7 Borghettia A, Migliavaccab G, Nuccia C A, . Black-start-up simulation of a repowered thermoelectric unit. Control Engineering Practice , 2001, 9(7): 791-803
doi: 10.1016/S0967-0661(01)00034-X
8 Cheres E. Basic Turbine Values from Data of Fault Events. IEEE , 2004
[1] S. Rupesh, C. Muraleedharan, P. Arun. Energy and exergy analysis of syngas production from different biomasses through air-steam gasification[J]. Front. Energy, 2020, 14(3): 607-619.
[2] Haizheng DANG, Dingli BAO, Zhiqian GAO, Tao ZHANG, Jun TAN, Rui ZHA, Jiaqi LI, Ning LI, Yongjiang ZHAO, Bangjian ZHAO. Theoretical modeling and experimental verifications of the single-compressor-driven three-stage Stirling-type pulse tube cryocooler[J]. Front. Energy, 2019, 13(3): 450-463.
[3] Seiya MAKI, Shuichi ASHINA, Minoru FUJII, Tsuyoshi FUJITA, Norio YABE, Kenji UCHIDA, Gito GINTING, Rizaldi BOER, Remi CHANDRAN. Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia[J]. Front. Energy, 2018, 12(3): 426-439.
[4] Suraj TALELE, Caleb TRAYLOR, Laura ARPAN, Cali CURLEY, Chien-Fei CHEN, Julia DAY, Richard FEIOCK, Mirsad HADZIKADIC, William J. TOLONE, Stan INGMAN, Dale YEATTS, Omer T. KARAGUZEL, Khee Poh LAM, Carol MENASSA, Svetlana PEVNITSKAYA, Thomas SPIEGELHALTER, Wei YAN, Yimin ZHU, Yong X. TAO. Energy modeling and data structure framework for Sustainable Human-Building Ecosystems (SHBE) — a review[J]. Front. Energy, 2018, 12(2): 314-332.
[5] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
[6] Amar BENAISSA, Boualaga RABHI, Ammar MOUSSI, Dahmani AISSA. A linear quadratic regulator control of a stand-alone PEM fuel cell power plant[J]. Front Energ, 2014, 8(1): 62-72.
[7] Hicham SERHOUD, Djilani BENATTOUS. Simulation of grid connection and maximum power point tracking control of brushless doubly-fed generator in wind power system[J]. Front Energ, 2013, 7(3): 380-387.
[8] Houda BRAHMI, Rachid DHIFAOUI. Dynamic characteristics and improved MPPT control of PV generator[J]. Front Energ, 2013, 7(3): 342-350.
[9] Naresh YADAV, Irshad Ahmad KHAN, Sandeep GROVER. Structural modeling of a typical gas turbine system[J]. Front Energ, 2012, 6(1): 57-79.
[10] Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO. Computer modeling of crystal growth of silicon for solar cells[J]. Front Energ, 2011, 5(3): 305-312.
[11] Ping ZHANG, Guoliang DING. Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat exchangers[J]. Front Energ Power Eng Chin, 2010, 4(4): 535-541.
[12] Zhi ZHUANG, Yuguo LI, Xudong YANG, Bin CHEN, Jiaping LIU, . Thermal and energy analysis of a Chinese kang[J]. Front. Energy, 2010, 4(1): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed