| 1 |
Modest M F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003
|
|
Modest M F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003
|
|
Zhang Z M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer, New York: Begell House, 2000, 51―411
|
| 2 |
Zhang Z M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer , New York: Begell House, 2000, 51-411
|
|
Timans P J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by RoozeboomF), Dordrecht, Netherlands: Academic Publishers, 1996, 35―102
|
| 3 |
Timans P J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by Roozeboom F), Dordrecht , Netherlands: Academic Publishers , 1996, 35-102
|
| 4 |
Wen C D, Mudawar I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer , 2004, 47(17, 18): 3591-3605
|
|
Wen C D, Mudawar I. Emissivity characteristicsof roughened aluminum alloy surfaces and assessment of multispectralradiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2004, 47(17, 18): 3591―3605
|
| 5 |
Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. Norwood, MA: Artech House, 1987
|
|
Beckmann P, Spizzichino A. The Scattering of ElectromagneticWaves from Rough Surfaces. Norwood, MA: Artech House, 1987
|
| 6 |
Saillard M, Sentenac A. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media , 2001, 11(3): R103-R137 doi: 10.1088/0959-7174/11/3/201
|
|
Saillard M, Sentenac A. Rigoroussolutions for electromagnetic scattering from rough surfaces. Waves Random Media, 2001, 11(3): R103―R137
doi: 10.1088/0959-7174/11/3/201
|
| 7 |
Warnick K F, Chew W C. Numerical simulation methods for rough surface scattering. Waves Random Media , 2001, 11(1): R1-R30 doi: 10.1088/0959-7174/11/1/201
|
|
Warnick K F, Chew W C. Numerical simulation methods for rough surface scattering. Waves Random Media, 2001, 11(1): R1―R30
doi: 10.1088/0959-7174/11/1/201
|
| 8 |
Macaskill C. Geometric optics and enhanced backscatter from very rough surfaces. Journal of the Optical Society of America A , 1991, 8(1): 88-96 doi: 10.1364/JOSAA.8.000088
|
|
Macaskill C. Geometric optics and enhanced backscatterfrom very rough surfaces. Journal of theOptical Society of America A, 1991, 8(1): 88―96
doi: 10.1364/JOSAA.8.000088
|
| 9 |
Tang K, Buckius R O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer , 2001, 44(21): 4059-4073 doi: 10.1016/S0017-9310(01)00050-3
|
|
Tang K, Buckius R O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer, 2001, 44(21): 4059―4073
doi: 10.1016/S0017-9310(01)00050-3
|
| 10 |
Zhou Y H, Shen Y J, Zhang Z M, . A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces. International Journal of Heat and Mass Transfer , 2002, 45(9): 1945-1949 doi: 10.1016/S0017-9310(01)00295-2
|
|
Zhou Y H, Shen Y J, Zhang Z M, et al. A Monte Carlo modelfor predicting the effective emissivity of the silicon wafer in rapidthermal processing furnaces. InternationalJournal of Heat and Mass Transfer, 2002, 45(9): 1945―1949
doi: 10.1016/S0017-9310(01)00295-2
|
| 11 |
Prokhorov A V, Hanssen L M. Algorithmic model of microfacet BRDF for Monte Carlo calculation of optical radiation transfer. SPIE , 2003, 5192: 141-157 doi: 10.1117/12.508577
|
|
Prokhorov A V, Hanssen L M. Algorithmic model of microfacet BRDF for Monte Carlocalculation of optical radiation transfer. SPIE, 2003, 5192: 141―157
doi: 10.1117/12.508577
|
| 12 |
Zhu Q Z, Zhang Z M. Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface. Journal of Heat Transfer , 2004, 126(6): 985-993 doi: 10.1115/1.1795244
|
|
Zhu Q Z, Zhang Z M. Anisotropic slope distribution and bidirectional reflectance of arough silicon surface. Journal of HeatTransfer, 2004, 126(6): 985―993
doi: 10.1115/1.1795244
|
| 13 |
Lee H J, Lee B J, Zhang Z M. Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & Radiative Transfer , 2005, 93(1-3): 185-194 doi: 10.1016/j.jqsrt.2004.08.021
|
|
Lee H J, Lee B J, Zhang Z M. Modeling the radiative propertiesof semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2005, 93(1―3): 185―194
doi: 10.1016/j.jqsrt.2004.08.021
|
| 14 |
Guérin C A. Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Waves Random Media , 2002, 12(3): 293-306 doi: 10.1088/0959-7174/12/3/303
|
|
Guérin C A. Scattering on rough surfaceswith alpha-stable non-Gaussian height distributions. Waves Random Media, 2002, 12(3): 293―306
doi: 10.1088/0959-7174/12/3/303
|
| 15 |
Viskanta R, Mengü? M P. Radiative transfer in dispersed media. Applied Mechanics Reviews , 1989, 42(9): 241-259
|
|
Viskanta R, Mengüç M P. Radiative transfer in dispersed media. Applied Mechanics Reviews, 1989, 42(9): 241―259
|
| 16 |
Tong T W, Swathi P S. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation , 1987, 11: 7-31
|
|
Tong T W, Swathi P S. Examination of the radiativeproperties of coated silica fibers. Journalof Thermal Insulation, 1987, 11: 7―31
|
| 17 |
Baillis D, Sacadura J F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy & Radiative Transfer , 2000, 67(5): 327-363 doi: 10.1016/S0022-4073(99)00234-4
|
|
Baillis D, Sacadura J F. Thermal radiation properties of dispersed media: theoretical predictionand experimental characterization. Journalof Quantitative Spectroscopy & Radiative Transfer, 2000, 67(5): 327―363
doi: 10.1016/S0022-4073(99)00234-4
|
| 18 |
Viskanta R, Mengü? M P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science , 1987, 13(2): 97-160 doi: 10.1016/0360-1285(87)90008-6
|
|
Viskanta R, Mengüç M P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science, 1987, 13(2): 97―160
doi: 10.1016/0360-1285(87)90008-6
|
| 19 |
Fricke J, Emmerling A. Aerogels. Journal of the American Ceramic Society , 1992, 75(8): 2027-2036 doi: 10.1111/j.1151-2916.1992.tb04461.x
|
|
Fricke J, Emmerling A. Aerogels. Journal of the AmericanCeramic Society, 1992, 75(8): 2027―2036
doi: 10.1111/j.1151-2916.1992.tb04461.x
|
| 20 |
Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer , 2005, 48(7): 1316-1329 doi: 10.1016/j.ijheatmasstransfer.2004.10.003
|
|
Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloysurfaces and assessment of multispectral radiation thermometry (MRT)emissivity models. International Journalof Heat and Mass Transfer, 2005, 48(7): 1316―1329
doi: 10.1016/j.ijheatmasstransfer.2004.10.003
|
| 21 |
Schietinger C. Wafer temperature measurement in RTP. In: Roozeboom F, ed. Advances in Rapid Thermal and Integrated Processing, Dordrecht , Netherlands: Academic Publishers, 1996, 103-123
|
|
Schietinger C. Wafertemperature measurement in RTP. In: RoozeboomF, ed. Advancesin Rapid Thermal and Integrated Processing, Dordrecht, Netherlands: Academic Publishers, 1996, 103―123
|
| 22 |
Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002
|
|
Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002
|
| 23 |
Zhang Z M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007
|
|
Zhang Z M. Nano/Microscale Heat Transfer. NewYork: McGraw-Hill, 2007
|
| 24 |
Priest R G, Germer T A. Polarimetric BRDF in the microfacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors , 2000, 1: 169-181
|
|
Priest R G, Germer T A. Polarimetric BRDF in themicrofacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia SpecialtyGroup on Passive Sensors, 2000, 1: 169―181
|
| 25 |
Feng W W, Wei Q N, Wang S M, . Numerical simulation of polarized Bidirectional Reflectance Distribution Function (BRDF) based on micro-facet model. SPIE , 2008, 6622: 66220A doi: 10.1117/12.790729
|
|
Feng W W, Wei Q N, Wang S M, et al. Numerical simulationof polarized Bidirectional Reflectance Distribution Function (BRDF)based on micro-facet model. SPIE, 2008, 6622: 66220A
doi: 10.1117/12.790729
|
| 26 |
Ogilvy J A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991
|
|
Ogilvy J A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991
|
| 27 |
Shen Y J, Zhang Z M, Tsai B K, . Bidirectional reflectance distribution function of rough silicon wafers. International Journal of Thermophysics , 2001, 22(4): 1311-1326 doi: 10.1023/A:1010636914347
|
|
Shen Y J, Zhang Z M, Tsai B K, et al. Bidirectional reflectancedistribution function of rough silicon wafers. International Journal of Thermophysics, 2001, 22(4): 1311―1326
doi: 10.1023/A:1010636914347
|
| 28 |
Zhang Z M, Fu C J, Zhu Q Z. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer , 2003, 37: 179-296
|
|
Zhang Z M, Fu C J, Zhu Q Z. Optical and thermal radiative properties of semiconductorsrelated to micro/nanotechnology. Advancesin Heat Transfer, 2003, 37: 179―296
|
| 29 |
Stover J. Optical Scattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995
|
|
Stover J. OpticalScattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995
|
| 30 |
Zhu Q Z, Zhang Z M. Correlation of angle-resolved light scattering with the microfacet orientation of rough silicon surfaces. Optical Engineering , 2005, 44(7): 073601 doi: 10.1117/1.1948816
|
|
Zhu Q Z, Zhang Z M. Correlation of angle-resolved light scattering with the microfacetorientation of rough silicon surfaces. Optical Engineering, 2005, 44(7): 073601
doi: 10.1117/1.1948816
|
| 31 |
Lee H J, Chen Y B, Zhang Z M. Directional radiative properties of anisotropic rough silicon and gold surfaces. International Journal of Heat and Mass Transfer , 2006, 49(23-24): 4482-4495
|
|
Lee H J, Chen Y B, Zhang Z M. Directional radiative properties of anisotropic roughsilicon and gold surfaces. InternationalJournal of Heat and Mass Transfer, 2006, 49(23―24): 4482―4495
|
| 32 |
Resnik D, Vrtacnik D, Amon S. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. Journal of Micromechanics and Microengineering , 2000, 10(3): 430-439 doi: 10.1088/0960-1317/10/3/319
|
|
Resnik D, Vrtacnik D, Amon S. Morphological study of {311}crystal planes anisotropically etched in (100) silicon: role of etchantsand etching parameters. Journal of Micromechanicsand Microengineering, 2000, 10(3): 430―439
doi: 10.1088/0960-1317/10/3/319
|
| 33 |
O'Donnell K A, Mendez E R. Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A , 1987, 4(7): 1194-1205 doi: 10.1364/JOSAA.4.001194
|
|
O'Donnell K A, Mendez E R. Experimental study of scattering from characterized randomsurfaces. Journal of the Optical Societyof America A, 1987, 4(7): 1194―1205
doi: 10.1364/JOSAA.4.001194
|
| 34 |
Nieto-Vesperinas M, Soto-Crespo J M. Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters , 1987, 12(12): 979-981 doi: 10.1364/OL.12.000979
|
|
Nieto-Vesperinas M, Soto-Crespo J M. Monte Carlo simulations for scatteringof electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters, 1987, 12(12): 979―981
doi: 10.1364/OL.12.000979
|
| 35 |
Maradudin A A, Michel T, McGurn A R, . Enhanced backscattering of light from a random grating. Annals of Physics , 1990, 203(2): 255-307 doi: 10.1016/0003-4916(90)90172-K
|
|
Maradudin A A, Michel T, McGurn A R, et al. Enhanced backscattering of light from a random grating. Annals of Physics, 1990, 203(2): 255―307
doi: 10.1016/0003-4916(90)90172-K
|
| 36 |
Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectric surfaces. Journal of the Optical Society of America A , 1991, 8(8): 1270-1286 doi: 10.1364/JOSAA.8.001270
|
|
Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectricsurfaces. Journal of the Optical Societyof America A, 1991, 8(8): 1270―1286
doi: 10.1364/JOSAA.8.001270
|
| 37 |
Lu J Q, Maradudin A A, Michel T. Enhanced backscattering from a rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B , 1991, 8(2): 311-318 doi: 10.1364/JOSAB.8.000311
|
|
Lu J Q, Maradudin A A, Michel T. Enhanced backscattering froma rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B, 1991, 8(2): 311―318
doi: 10.1364/JOSAB.8.000311
|
| 38 |
Gu Z H, Lu J Q. Maradudin A A. Enhanced backscattering from a rough dielectric film on a glass substrate. Journal of the Optical Society of America A , 1993, 10(8): 1753-1764 doi: 10.1364/JOSAA.10.001753
|
|
Gu Z H, Lu J Q. Maradudin A A. Enhanced backscattering froma rough dielectric film on a glass substrate. Journal of the Optical Society of America A, 1993, 10(8): 1753―1764
doi: 10.1364/JOSAA.10.001753
|
| 39 |
Fu K, Hsu P F. Modeling the radiative properties microscale random roughness surfaces. Journal of Heat Transfer , 2007, 129(1): 71-78 doi: 10.1115/1.2401200
|
|
Fu K, Hsu P F. Modelingthe radiative properties microscale random roughness surfaces. Journal of Heat Transfer, 2007, 129(1): 71―78
doi: 10.1115/1.2401200
|
| 40 |
Lettieri T R, Marx E, Song J F, . Light scattering from glossy coatings on paper. Applied Optics , 1991, 30(30): 4439-4447
|
|
Lettieri T R, Marx E, Song J F, et al. Light scattering from glossy coatings on paper. Applied Optics, 1991, 30(30): 4439―4447
|
| 41 |
Tang K, Kawka P A, Buckius R O. Geometric optics applied to rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer , 1999, 13(2): 169-176 doi: 10.2514/2.6427
|
|
Tang K, Kawka P A, Buckius R O. Geometric optics appliedto rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 169―176
doi: 10.2514/2.6427
|
| 42 |
Icart I, Arques D. Simulation of the optical behavior of rough identical multilayer. SPIE , 2000, 4100: 84-95 doi: 10.1117/12.401648
|
|
Icart I, Arques D. Simulationof the optical behavior of rough identical multilayer. SPIE, 2000, 4100: 84―95
doi: 10.1117/12.401648
|
| 43 |
Elfouhaily T M, Guérin C A. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media , 2004, 14(4): R1-R40 doi: 10.1088/0959-7174/14/4/R01
|
|
Elfouhaily T M, Guérin C A. A critical survey of approximate scatteringwave theories from random rough surfaces. Waves Random Media, 2004, 14(4): R1―R40
doi: 10.1088/0959-7174/14/4/R01
|
| 44 |
Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America , 1988, 83(1): 78-92 doi: 10.1121/1.396188
|
|
Thorsos E I. The validity of the Kirchhoff approximationfor rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, 83(1): 78―92
doi: 10.1121/1.396188
|
| 45 |
Soto-Crespo J M, Nieto-Vesperinas M, Friberg A T. Scattering from slightly rough random surfaces-a detailed study on the validity of the small perturbation method. Journal of the Optical Society of America A , 1990, 7(7): 1185-1201 doi: 10.1364/JOSAA.7.001185
|
|
Soto-Crespo J M, Nieto-Vesperinas M, Friberg A T. Scattering from slightly rough random surfaces―a detailedstudy on the validity of the small perturbation method. Journal of the Optical Society of America A, 1990, 7(7): 1185―1201
doi: 10.1364/JOSAA.7.001185
|
| 46 |
Tang K, Dimenna R A, Buckius R O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. International Journal of Heat and Mass Transfer , 1997, 40(1): 49-59 doi: 10.1016/S0017-9310(96)00073-7
|
|
Tang K, Dimenna R A, Buckius R O. Regions of validity of thegeometric optics approximation for angular scattering from very roughsurfaces. International Journal of Heatand Mass Transfer, 1997, 40(1): 49―59
doi: 10.1016/S0017-9310(96)00073-7
|
| 47 |
Fu K, Hsu P F. New regime map of the geometric optics approximation for scattering from random rough surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer , 2008, 109(2): 180-188 doi: 10.1016/j.jqsrt.2007.08.019
|
|
Fu K, Hsu P F. New regimemap of the geometric optics approximation for scattering from randomrough surfaces. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2008, 109(2): 180―188
doi: 10.1016/j.jqsrt.2007.08.019
|
| 48 |
Zhou Y H, Zhang Z M. Radiative properties of semitransparent silicon wafers with rough surfaces. Journal of Heat Transfer , 2003, 125(3): 462-470 doi: 10.1115/1.1565089
|
|
Zhou Y H, Zhang Z M. Radiative properties of semitransparent silicon wafers with roughsurfaces. Journal of Heat Transfer, 2003, 125(3): 462―470
doi: 10.1115/1.1565089
|
| 49 |
Zhu Q Z, Lee H J, Zhang Z M. The validity of using thin-film optics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer , 2005, 19: 548-555 doi: 10.2514/1.13595
|
|
Zhu Q Z, Lee H J, Zhang Z M. The validity of using thin-filmoptics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer, 2005, 19: 548―555
doi: 10.2514/1.13595
|
| 50 |
Lee H J, Zhang Z M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. International Journal of Thermophysics , 2006, 27(3): 820-839 doi: 10.1007/s10765-006-0055-0
|
|
Lee H J, Zhang Z M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. InternationalJournal of Thermophysics, 2006, 27(3): 820―839
doi: 10.1007/s10765-006-0055-0
|
| 51 |
Bruce N C. Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A , 1997, 14(8): 1850-1858 doi: 10.1364/JOSAA.14.001850
|
|
Bruce N C. Scattering of light from surfaces withone-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A, 1997, 14(8): 1850―1858
doi: 10.1364/JOSAA.14.001850
|
| 52 |
Lee H J, Zhang Z M. Applicability of phase ray-tracing method for light scattering from rough surfaces. Journal of Thermophysics and Heat Transfer , 2007, 21: 330-336 doi: 10.2514/1.26191
|
|
Lee H J, Zhang Z M. Applicability of phase ray-tracing method for light scattering fromrough surfaces. Journal of Thermophysicsand Heat Transfer, 2007, 21: 330―336
doi: 10.2514/1.26191
|
| 53 |
Barnes P Y, Early E A, Parr A C. Spectral Reflectance, NIST Special Publication 250-48 . Washington, DC: U.S. Government Printing Office, 1998
|
|
Barnes P Y, Early E A, Parr A C. Spectral Reflectance, NIST Special Publication 250―48. Washington, DC: U.S. GovernmentPrinting Office, 1998
|
| 54 |
Shen Y J, Zhu Q Z, Zhang Z M. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments , 2003, 74(11): 4885-4892 doi: 10.1063/1.1614853
|
|
Shen Y J, Zhu Q Z, Zhang Z M. A scatterometer for measuringthe bidirectional reflectance and transmittance of semiconductor waferswith rough surfaces. Review of ScientificInstruments, 2003, 74(11): 4885―4892
doi: 10.1063/1.1614853
|
| 55 |
Dai J M, Qi C, Sun X G. Comparison and research for several Bi-directional reflectance distribution function (BRDF) measuring. SPIE , 2003, 5280: 655-660 doi: 10.1117/12.520303
|
|
Dai J M, Qi C, Sun X G. Comparison and research forseveral Bi-directional reflectance distribution function (BRDF) measuring. SPIE, 2003, 5280: 655―660
doi: 10.1117/12.520303
|
| 56 |
Zhao Z Y, Qi C, Dai J M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters , 2007, 5(3): 168-171
|
|
Zhao Z Y, Qi C, Dai J M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters, 2007, 5(3): 168―171
|
| 57 |
Feng W W, Wei Q N. A scatterometer for measuring the polarized bidirectional reflectance distribution function of painted surfaces in the infrared. Infrared Physics & Technology , 2008, 51: 559-563 doi: 10.1016/j.infrared.2008.08.001
|
|
Feng W W, Wei Q N. A scatterometer for measuring the polarized bidirectional reflectancedistribution function of painted surfaces in the infrared. Infrared Physics & Technology, 2008, 51: 559―563
doi: 10.1016/j.infrared.2008.08.001
|
| 58 |
Lee H J, Bryson A C, Zhang Z M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics , 2007, 28(3): 918-933 doi: 10.1007/s10765-007-0192-0
|
|
Lee H J, Bryson A C, Zhang Z M. Measurement and modelingof the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918―933
doi: 10.1007/s10765-007-0192-0
|
| 59 |
Ghmari F, Sassi I, Sifaoui M S. Directional hemispherical radiative properties of random dielectric rough surfaces. Waves Random Complex , 2005, 15(4): 469-486 doi: 10.1080/17455030500361838
|
|
Ghmari F, Sassi I, Sifaoui M S. Directional hemisphericalradiative properties of random dielectric rough surfaces. Waves Random Complex, 2005, 15(4): 469―486
doi: 10.1080/17455030500361838
|
| 60 |
Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)
|
|
Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)
|
| 61 |
Kerker M. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969
|
|
Kerker M. TheScattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969
|
| 62 |
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983
|
|
Bohren C F, Huffman D R. Absorption and Scatteringof Light by Small Particles. New York: Wiley, 1983
|
| 63 |
Schuster A. Radiation through foggy atmospheres. The Astrophysical Journal , 1905, 21(1): 1-22 doi: 10.1086/141186
|
|
Schuster A. Radiation through foggy atmospheres. The Astrophysical Journal, 1905, 21(1): 1-22
doi: 10.1086/141186
|
| 64 |
Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys , 1931, 12(11a): 593-601
|
|
Kubelka P, Munk F. An article on optics of paintlayers. Z Tech Phys, 1931, 12(11a): 593―601
|
| 65 |
Chandrasekhar S. Radiative Transfer. New York: Dover, 1960
|
|
Chandrasekhar S. RadiativeTransfer. New York: Dover, 1960
|
| 66 |
Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978 by Academic Press, Vols. 1&2)
|
|
Ishimaru A. WavePropagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978by Academic Press, Vols. 1&2)
|
| 67 |
Mishchenko M I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics , 2002, 41(33): 7114-7134 doi: 10.1364/AO.41.007114
|
|
Mishchenko M I. Vector radiative transferequation for arbitrarily shaped and arbitrarily oriented particles:a microphysical derivation from statistical electromagnetics. Applied Optics, 2002, 41(33): 7114―7134
doi: 10.1364/AO.41.007114
|
|
Tien C L, Drolen B L. Thermal radiation in particulatemedia with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corp, 1987, 1―32
|
| 68 |
Tien C L, Drolen B L. Thermal radiation in particulate media with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer , New York: Hemisphere Publishing Corp, 1987, 1-32
|
|
Hapke B. Bidirectional reflectance spectroscopy― I. Theory. Journal of GeophysicalResearch, 1981, 86(B4): 3039―3054
doi: 10.1029/JB086iB04p03039
|
| 69 |
Hapke B. Bidirectional reflectance spectroscopy - I. Theory. Journal of Geophysical Research , 1981, 86(B4): 3039-3054 doi: 10.1029/JB086iB04p03039
|
| 70 |
Kokhanovsky A A, Sokoletsky L G. Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Research and Application , 2006, 31(6): 498-509 doi: 10.1002/col.20263
|
|
Kokhanovsky A A, Sokoletsky L G. Reflection of light from semi-infinite absorbing turbidmedia. Part 2: Plane albedo and reflection function. Color Research and Application, 2006, 31(6): 498―509
doi: 10.1002/col.20263
|
| 71 |
Mishchenko M I, Dlugach J M, Yanovitskij E G, . Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer , 1999, 63(4): 409-432 doi: 10.1016/S0022-4073(99)00028-X
|
|
Mishchenko M I, Dlugach J M, Yanovitskij E G, et al. Bidirectional reflectance of flat, optically thick particulate layers:an efficient radiative transfer solution and applications to snowand soil surfaces. Journal of QuantitativeSpectroscopy & Radiative Transfer, 1999, 63(4): 409―432
doi: 10.1016/S0022-4073(99)00028-X
|
| 72 |
Williams M M R. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical , 2007, 40(24): 6407-6425 doi: 10.1088/1751-8113/40/24/009
|
|
Williams M M R. The searchlight problem inradiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical, 2007, 40(24): 6407―6425
doi: 10.1088/1751-8113/40/24/009
|
| 73 |
Mueller D W, Crosbie A L. Three-dimensional radiative transfer in an anisotropically scattering, plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & Radiative Transfer , 2002, 75(6): 661-721 doi: 10.1016/S0022-4073(02)00028-6
|
|
Mueller D W, Crosbie A L. Three-dimensional radiative transfer in an anisotropically scattering,plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2002, 75(6): 661―721
doi: 10.1016/S0022-4073(02)00028-6
|
| 74 |
Mudgett P S, Richards L W. Multiple scattering calculations for technology. Applied Optics , 1971, 10(7): 1485-1502 doi: 10.1364/AO.10.001485
|
|
Mudgett P S, Richards L W. Multiple scattering calculations for technology. Applied Optics, 1971, 10(7): 1485―1502
doi: 10.1364/AO.10.001485
|
| 75 |
Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics , 1988, 27(12): 2502-2509
|
|
Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stablealgorithm for discrete-ordinate-method radiative transfer in multiplescattering and emitting layered media. Applied Optics, 1988, 27(12): 2502―2509
|
| 76 |
Fivelan W A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. Journal of Thermophysics and Heat Transfer , 1988, 2(4): 309-316 doi: 10.2514/3.105
|
|
Fivelan W A. Three-dimensional radiative heat-transfer solutions bythe discrete-ordinates method. Journalof Thermophysics and Heat Transfer, 1988, 2(4): 309―316
doi: 10.2514/3.105
|
| 77 |
Evans K E. Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonic spatial grid method. Journal of the Atmospheric Sciences , 1993, 50(18): 3111-3124 doi: 10.1175/1520-0469(1993)050<3111:TDRTIC>2.0.CO;2
|
|
Evans K E. Two-dimensionalradiative transfer in cloudy atmospheres: the spherical harmonic spatialgrid method. Journal of the AtmosphericSciences, 1993, 50(18): 3111―3124
doi: 10.1175/1520-0469(1993)050<3111:TDRTIC>2.0.CO;2
|
| 78 |
Kisselev V B, Roberti L , Perona G. An application of the finite element method to the solution of the radiative transfer equation. Journal of Quantitative Spectroscopy & Radiative Transfer , 1994, 51(5-6): 545-663
|
|
Kisselev V B, Roberti L , Perona G. An application of the finite element method to the solutionof the radiative transfer equation. Journalof Quantitative Spectroscopy & Radiative Transfer, 1994, 51(5―6): 545―663
|
| 79 |
Liu L H. Finite element simulation of radiative heat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer , 2004, 18(3): 555-557 doi: 10.2514/1.10917
|
|
Liu L H. Finite element simulation of radiativeheat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 555―557
doi: 10.2514/1.10917
|
| 80 |
An W, Ruan L M, Qi H, . Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer , 2005, 96(3-4): 409-422 doi: 10.1016/j.jqsrt.2004.12.010
|
|
An W, Ruan L M, Qi H, et al. Finite element method for radiativeheat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2005, 96(3―4): 409―422
doi: 10.1016/j.jqsrt.2004.12.010
|
| 81 |
Chai J, Parthasarathy G, Patankar S, . A finite-volume radiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer , 1994, 9(3): 410-415 doi: 10.2514/3.682
|
|
Chai J, Parthasarathy G, Patankar S, et al. A finite-volumeradiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer, 1994, 9(3): 410―415
doi: 10.2514/3.682
|
| 82 |
Howell J R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer , 1998, 120(3): 547-560 doi: 10.1115/1.2824310
|
|
Howell J R. The Monte Carlo method in radiative heattransfer. Journal of Heat Transfer, 1998, 120(3): 547―560
doi: 10.1115/1.2824310
|
| 83 |
Gjerstad K I, Stamnes J J, Hamre B, . Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Applied Optics , 2003, 42(15): 2609-2622 doi: 10.1364/AO.42.002609
|
|
Gjerstad K I, Stamnes J J, Hamre B, et al. MonteCarlo and discrete-ordinate simulations of irradiances in the coupledatmosphere-ocean system. Applied Optics, 2003, 42(15): 2609―2622
doi: 10.1364/AO.42.002609
|
| 84 |
Modest M F. Backward Monte Carlo simulations in radiative heat transfer. Journal of Heat Transfer , 2003, 125(1): 57-62 doi: 10.1115/1.1518491
|
|
Modest M F. Backward Monte Carlo simulations in radiativeheat transfer. Journal of Heat Transfer, 2003, 125(1): 57―62
doi: 10.1115/1.1518491
|
| 85 |
Lu X, Hsu P F. Reverse Monte Carlo simulations of ultra-short light pulse propagation within three-dimensional nonhomogeneous media. Journal of Thermophysics and Heat Transfer , 2005, 19(3): 353-359 doi: 10.2514/1.12142
|
|
Lu X, Hsu P F. Reverse MonteCarlo simulations of ultra-short light pulse propagation within three-dimensionalnonhomogeneous media. Journal of Thermophysicsand Heat Transfer, 2005, 19(3): 353―359
doi: 10.2514/1.12142
|
| 86 |
Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer , 2007, 129(5): 634-645 doi: 10.1115/1.2712477
|
|
Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropicallyscattering layer. Journal of Heat Transfer, 2007, 129(5): 634―645
doi: 10.1115/1.2712477
|
| 87 |
Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy & Radiative Transfer , 2004, 83(3-4): 459-481 doi: 10.1016/S0022-4073(03)00031-1
|
|
Zhou H C, Chen D L, Cheng Q. A new way to calculate radiativeintensity and solve radiative transfer equation through using theMonte Carlo method. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2004, 83(3―4): 459―481
doi: 10.1016/S0022-4073(03)00031-1
|
| 88 |
Zhao J M, Liu L H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer , 2007, 107(1): 1-16 doi: 10.1016/j.jqsrt.2007.02.001
|
|
Zhao J M, Liu L H. Discontinuous spectral element method for solving radiative heattransfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 1―16
doi: 10.1016/j.jqsrt.2007.02.001
|
| 89 |
Tan H P, Lallemand M. Transient radiative-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions. International Journal of Heat and Mass Transfer , 1989, 32(5): 795-810 . doi: 10.1016/0017-9310(89)90229-9
|
|
Tan H P, Lallemand M. Transientradiative-conductive heat transfer in flat glasses submitted to temperature,flux and mixed boundary conditions. InternationalJournal of Heat and Mass Transfer, 1989, 32(5): 795―810.
doi: 10.1016/0017-9310(89)90229-9
|
| 90 |
Tan H P, Xia X L, Liu L H, . Numerical calculation for Infrared Radiative Characteristics and Transfer- Computational Thermal Radiation. Harbin: Press of the Harbin Institute of Technology, 2006 (in Chinese)
|
|
Tan H P, Xia X L, Liu L H, et al. Numerical calculation for Infrared RadiativeCharacteristics and Transfer― Computational Thermal Radiation. Harbin: Pressof the Harbin Institute of Technology, 2006 (in Chinese)
|
| 91 |
Liu L H, Zhao J M, Tan H P. Finite/Spectral Element Methods for Solving Radiative Transfer Equation. Beijing: Science Press, 2008 (in Chinese)
|
|
Liu L H, Zhao J M, Tan H P. Finite/Spectral Element Methods for Solving RadiativeTransfer Equation. Beijing: Science Press, 2008 (in Chinese)
|
| 92 |
Mishchenko M I, Hovenier J W, Travis L D, eds. Light Scattering by Nonspherical Particles. San Diego: Academic Press, 2000
|
|
Mishchenko M I, Hovenier J W, Travis L D, eds. Light Scattering by NonsphericalParticles. San Diego: Academic Press, 2000
|
| 93 |
Tsang L, Kong J A, Ding K H. Scattering of Electromagnetic Waves-Theories and Applications, New York: Wiley, 2000 doi: 10.1002/0471224286
|
|
Tsang L, Kong J A, Ding K H. Scattering of ElectromagneticWaves―Theories and Applications, New York: Wiley, 2000
doi: 10.1002/0471224286
|
| 94 |
Kahnert F M. Numerical method in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer , 2003, 79-80(7): 775-824 doi: 10.1016/S0022-4073(02)00321-7
|
|
Kahnert F M. Numerical method in electromagnetic scatteringtheory. Journal of Quantitative Spectroscopy& Radiative Transfer, 2003, 79―80(7): 775―824
doi: 10.1016/S0022-4073(02)00321-7
|
| 95 |
Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain method. 3rd ed. Boston MA: Artech House, 2005
|
|
Taflove A, Hagness S C. Computational Electrodynamics:the Finite-Difference Time-Domain method. 3rded. Boston MA: Artech House, 2005
|
| 96 |
Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A , 1994, 11(4): 1491-1499 doi: 10.1364/JOSAA.11.001491
|
|
Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 1994, 11(4): 1491―1499
doi: 10.1364/JOSAA.11.001491
|
| 97 |
Wang K Y, Tien C L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer , 1983, 30(3): 213-223 doi: 10.1016/0022-4073(83)90059-6
|
|
Wang K Y, Tien C L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and RadiativeTransfer, 1983, 30(3): 213―223
doi: 10.1016/0022-4073(83)90059-6
|
| 98 |
Lee S C. Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer , 1989, 32(2): 311-319 doi: 10.1016/0017-9310(89)90178-6
|
|
Lee S C. Effect of fiber orientation on thermalradiation in fibrous media. InternationalJournal of Heat and Mass Transfer, 1989, 32(2): 311―319
doi: 10.1016/0017-9310(89)90178-6
|
| 99 |
Dombrovsky L A. Quartz-fiber thermal insulation: infrared radiative properties and calculation of radiative-conductive heat transfer. Journal of Heat Transfer , 1996, 118(2): 408-414 doi: 10.1115/1.2825859
|
|
Dombrovsky L A. Quartz-fiber thermal insulation:infrared radiative properties and calculation of radiative-conductiveheat transfer. Journal of Heat Transfer, 1996, 118(2): 408―414
doi: 10.1115/1.2825859
|
| 100 |
Lee S C. Radiative transfer through a fibrous medium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer , 1986, 36(3): 253-263 doi: 10.1016/0022-4073(86)90073-7
|
|
Lee S C. Radiative transfer through a fibrousmedium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 36(3): 253―263
doi: 10.1016/0022-4073(86)90073-7
|
| 101 |
Yamada J, Kurosaki Y. Radiative characteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer , 2000, 43(6): 981-991 doi: 10.1016/S0017-9310(99)00195-7
|
|
Yamada J, Kurosaki Y. Radiativecharacteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer, 2000, 43(6): 981―991
doi: 10.1016/S0017-9310(99)00195-7
|
| 102 |
Coquard R, Baillis D. Radiative properties of dense fibrous medium containing fibers in the geometric limit. Journal of Heat Transfer , 2006, 128(10): 1022-1030 doi: 10.1115/1.2345426
|
|
Coquard R, Baillis D. Radiativeproperties of dense fibrous medium containing fibers in the geometriclimit. Journal of Heat Transfer, 2006, 128(10): 1022―1030
doi: 10.1115/1.2345426
|
| 103 |
Tian W, Huang W, Chiu W K S. Thermal radiative properties of a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer , 2007, 129(6): 763-767 doi: 10.1115/1.2717247
|
|
Tian W, Huang W, Chiu W K S. Thermal radiative propertiesof a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer, 2007, 129(6): 763―767
doi: 10.1115/1.2717247
|
| 104 |
Lee S C. Effective propagation constant of fibrous media containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer , 1992, 114(2): 473-478 doi: 10.1115/1.2911297
|
|
Lee S C. Effective propagation constant of fibrousmedia containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer, 1992, 114(2): 473―478
doi: 10.1115/1.2911297
|
| 105 |
Lee S C. Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer , 1994, 8(4): 641-646 doi: 10.2514/3.593
|
|
Lee S C. Dependent vs independent scattering in fibrous compositescontaining parallel fibers. Journal ofThermophysics and Heat Transfer, 1994, 8(4): 641―646
doi: 10.2514/3.593
|
| 106 |
Lee S C. Scattering by a dense layer of infinite cylinders at normal incidence. Journal of the Optical Society of America , 2008, 25(5): 1022-1029 doi: 10.1364/JOSAA.25.001022
|
|
Lee S C. Scattering by a dense layer of infinitecylinders at normal incidence. Journalof the Optical Society of America, 2008, 25(5): 1022―1029
doi: 10.1364/JOSAA.25.001022
|
| 107 |
Lee S C. Scattering by a dense finite layer of infinite cylinders at oblique incidence. Journal of the Optical Society of America A , 2008, 25(10): 2489-2498 doi: 10.1364/JOSAA.25.002489
|
|
Lee S C. Scattering by a dense finite layer ofinfinite cylinders at oblique incidence. Journal of the Optical Society of America A, 2008, 25(10): 2489―2498
doi: 10.1364/JOSAA.25.002489
|
| 108 |
Wang K Y, Kumar S, Tien C L. Radiative transfer in thermal insulations of hollow and coated fibers. Journal of Thermophysics and Heat Transfer , 1987, (1): 289-295 doi: 10.2514/3.42
|
|
Wang K Y, Kumar S, Tien C L. Radiative transfer in thermal insulationsof hollow and coated fibers. Journal ofThermophysics and Heat Transfer, 1987, (1): 289―295
doi: 10.2514/3.42
|
| 109 |
Yang L L, He X D, He F. ITO coated quartz fibers for heat radiative applications. Materials Letters , 2008, 62(30): 4539-4541 doi: 10.1016/j.matlet.2008.08.033
|
|
Yang L L, He X D, He F. ITO coated quartz fibersfor heat radiative applications. MaterialsLetters, 2008, 62(30): 4539―4541
doi: 10.1016/j.matlet.2008.08.033
|
| 110 |
Yan Changhai, Meng Songhe, Chen Guiqing, . Research on nanocomposite material coating on fibrous insulations. Materials Review , 2006, 20(4): 33-135 (in Chinese)
|
|
Yan Changhai, Meng Songhe, Chen Guiqing, et al. Research on nanocomposite material coating onfibrous insulations. Materials Review, 2006, 20(4): 33―135 (in Chinese)
|
| 111 |
Papini M. Influence of the orientation of polypropylene fibers on their radiative properties. Applied Spectroscopy , 1994, 48(4): 472-476 doi: 10.1366/000370294775268875
|
|
Papini M. Influence of the orientation of polypropylenefibers on their radiative properties. AppliedSpectroscopy, 1994, 48(4): 472―476
doi: 10.1366/000370294775268875
|
| 112 |
Yamada J. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy & Radiative Transfer , 2002, 73(2-5): 261-272 doi: 10.1016/S0022-4073(01)00217-5
|
|
Yamada J. Radiative properties of fibers with non-circularcross sectional shapes. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2002, 73(2―5): 261―272
doi: 10.1016/S0022-4073(01)00217-5
|
| 113 |
Manickavasagam S, Mengü? M P. Scattering matrix elements of fractal-like soot agglomerates. Applied Optics , 1997, 36(6): 1337-1351 doi: 10.1364/AO.36.001337
|
|
Manickavasagam S, Mengüç M P. Scattering matrix elementsof fractal-like soot agglomerates. AppliedOptics, 1997, 36(6): 1337―1351
doi: 10.1364/AO.36.001337
|
| 114 |
Zhu Jinyu, Choi M Y, Mulholland G W. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute , 2002, 29: 2367-2374 doi: 10.1016/S1540-7489(02)80288-7
|
|
Zhu Jinyu, Choi M Y, Mulholland G W. Measurement of visible andnear-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute, 2002, 29: 2367―2374
doi: 10.1016/S1540-7489(02)80288-7
|
| 115 |
Lei C X, Li F L, Liu C D, . Light scattering properties of soot aggregates. The Journal of Light Scattering , 2006, 18(3): 261-266
|
|
Lei C X, Li F L, Liu C D, et al. Light scattering properties of soot aggregates. The Journal of Light Scattering, 2006, 18(3): 261―266
|
| 116 |
Huang C J, Liu Y F, Wu Z S. Numerical calculation of optical cross section and scattering matrix for soot aggregation particle. Acta Physica Sinica , 2007, 56(7): 4068-4074 (in Chinese)
|
|
Huang C J, Liu Y F, Wu Z S. Numerical calculation of optical cross section and scatteringmatrix for soot aggregation particle. ActaPhysica Sinica, 2007, 56(7): 4068―4074 (in Chinese)
|
| 117 |
Liu L, Mishchenko M I, Arnott W P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer , 2008, 109(15): 2656-2663 doi: 10.1016/j.jqsrt.2008.05.001
|
|
Liu L, Mishchenko M I, Arnott W P. A study of radiative propertiesof fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2008, 109(15): 2656―2663
doi: 10.1016/j.jqsrt.2008.05.001
|
| 118 |
Dobbins R A, Megaridis M. Absorption and scattering of light by polydisperse aggregates. Applied Optics , 1991, 30(33): 4747-4754
|
|
Dobbins R A, Megaridis M. Absorption and scatteringof light by polydisperse aggregates. AppliedOptics, 1991, 30(33): 4747―4754
|
| 119 |
Liu L, Mishchenko M I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy & Radiative Transfer , 2007, 106(1-3): 262-273 doi: 10.1016/j.jqsrt.2007.01.020
|
|
Liu L, Mishchenko M I. Scattering and radiative properties of complex soot and soot-containingaggregate particles. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2007, 106(1―3): 262―273
doi: 10.1016/j.jqsrt.2007.01.020
|
| 120 |
Mackowski D W. A simplified model to predict the effects of aggregation on the absorption properties of soot particles. Journal of Quantitative Spectroscopy & Radiative Transfer , 2006, 100(1-3): 237-249
|
|
Mackowski D W. A simplified model to predict the effects of aggregation on the absorptionproperties of soot particles. Journal ofQuantitative Spectroscopy & Radiative Transfer, 2006, 100(1-3): 237―249
|
| 121 |
Eymet V, Brasil A M, Ha M E. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer , 2002, 74(6): 697-718 doi: 10.1016/S0022-4073(01)00280-1
|
|
Eymet V, Brasil A M, Ha M E. Numerical investigation ofthe effect of soot aggregation on the radiative properties in theinfrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 74(6): 697―718
doi: 10.1016/S0022-4073(01)00280-1
|
| 122 |
Yon J, Claude R, Thierry G. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Particle & Particle Systems Characterization , 2008, 25(1): 54-67 doi: 10.1002/ppsc.200700011
|
|
Yon J, Claude R, Thierry G. Extension of RDG-FA for scatteringprediction of aggregates of soot taking into account interactionsof large monomers. Particle & ParticleSystems Characterization, 2008, 25(1): 54―67
doi: 10.1002/ppsc.200700011
|
| 123 |
Farias T L, Koylu U O, Carvalho M G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics , 1996, 35(33): 6560-6567 doi: 10.1364/AO.35.006560
|
|
Farias T L, Koylu U O, Carvalho M G. Range of validity of theRayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics, 1996, 35(33): 6560―6567
doi: 10.1364/AO.35.006560
|
| 124 |
Mackowski D W. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Applied Optics , 1995, 34(18): 3535 doi: 10.1364/AO.34.003535
|
|
Mackowski D W. Electrostatics analysis ofradiative absorption by sphere clusters in the Rayleigh limit: applicationto soot particles. Applied Optics, 1995, 34(18): 3535
doi: 10.1364/AO.34.003535
|
| 125 |
Lee S C, Tien C L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer , 1983, 29(3): 259-265 doi: 10.1016/0022-4073(83)90043-2
|
|
Lee S C, Tien C L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1983, 29(3): 259―265
doi: 10.1016/0022-4073(83)90043-2
|
| 126 |
Nilsson T, Sunden B. Thermal radiative coefficients of cylindrically and spherically shaped soot particles and soot agglomerates. Heat and Mass Transfer , 2004, 41(1): 12-22 doi: 10.1007/s00231-004-0519-3
|
|
Nilsson T, Sunden B. Thermalradiative coefficients of cylindrically and spherically shaped sootparticles and soot agglomerates. Heat andMass Transfer, 2004, 41(1): 12―22
doi: 10.1007/s00231-004-0519-3
|
| 127 |
Hermann G, Iden R, Mielke M, . On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids , 1995, 186: 380-387 doi: 10.1016/0022-3093(95)90076-4
|
|
Hermann G, Iden R, Mielke M, et al. On the way to commercialproduction of silica aerogel. Journal ofNon-Crystalline Solids, 1995, 186: 380―387
doi: 10.1016/0022-3093(95)90076-4
|
| 128 |
Zhou B, Shen J, Wu Y H, . Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C , 2007, 27(5–8): 1291-1294 doi: 10.1016/j.msec.2006.06.032
|
|
Zhou B, Shen J, Wu Y H, et al. Hydrophobic silicaaerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C, 2007, 27(5–8): 1291―1294
doi: 10.1016/j.msec.2006.06.032
|
| 129 |
Shen J, Zhang Z H, Wu G M, . Preparation and characterization of silica aerogels derived from ambient pressure Journal of Materials Science and Technology , 2006, 22(6): 798-802
|
|
Shen J, Zhang Z H, Wu G M, et al. Preparation and characterization of silica aerogelsderived from ambient pressure Journal ofMaterials Science and Technology, 2006, 22(6): 798―802
|
| 130 |
Reim M, Beck A, Korner W, . Highly insulating aerogel glazing for solar energy usage. Solar Energy , 2002, 72(1): 21-29 doi: 10.1016/S0038-092X(01)00086-X
|
|
Reim M, Beck A, Korner W, et al. Highly insulatingaerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21―29
doi: 10.1016/S0038-092X(01)00086-X
|
| 131 |
Wang P, Korner W, Emmerling A, . Optical investigations of silica aerogels. Journal of Non-Crystalline Solids , 1992, 145(1-3): 141-145 doi: 10.1016/S0022-3093(05)80444-2
|
|
Wang P, Korner W, Emmerling A, et al. Optical investigationsof silica aerogels. Journal of Non-CrystallineSolids, 1992, 145(1―3): 141―145
doi: 10.1016/S0022-3093(05)80444-2
|
| 132 |
Beck A, Korner W, Fricke J. Optical investigations of granular aerogel fills. Journal of Physics D: Applied Physics , 1994, 27(1): 13-18 doi: 10.1088/0022-3727/27/1/002
|
|
Beck A, Korner W, Fricke J. Optical investigations ofgranular aerogel fills. Journal of PhysicsD: Applied Physics, 1994, 27(1): 13―18
doi: 10.1088/0022-3727/27/1/002
|
| 133 |
Zhu Qunzhi, Duan Rui, Li Yongguang. Measurements of solar optical properties of transparent insulation materials. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada , 2007, 919-924
|
|
Zhu Qunzhi, Duan Rui, Li Yongguang. Measurements of solar optical properties of transparentinsulation materials. Proceedings of theASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver,Canada, 2007, 919―924
|
| 134 |
Wang P, Beck A, Korner W, . Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatmen. Journal of Physics D: Applied Physics , 1994, 27(2): 414-418 doi: 10.1088/0022-3727/27/2/036
|
|
Wang P, Beck A, Korner W, et al. Density and refractiveindex of silica aerogels after low- and high-temperature supercriticaldrying and thermal treatmen. Journal ofPhysics D: Applied Physics, 1994, 27(2): 414―418
doi: 10.1088/0022-3727/27/2/036
|
| 135 |
Pajonk G M. Some applications of silica aerogels. Colloid and Polymer Science , 2003, 281(7): 637-651 doi: 10.1007/s00396-002-0814-9
|
|
Pajonk G M. Some applications of silica aerogels. Colloid and Polymer Science, 2003, 281(7): 637―651
doi: 10.1007/s00396-002-0814-9
|
| 136 |
Ishimaru A. Diffusion of light in turbid material. Applied Optics , 1989, 28(12): 2210-2215
|
|
Ishimaru A. Diffusionof light in turbid material. Applied Optics, 1989, 28(12): 2210―2215
|
| 137 |
Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation I: Theory. Applied Optics , 1997, 36(19): 4587-4599 doi: 10.1364/AO.36.004587
|
|
Contini D, Martelli F, Zaccanti G. Photon migration througha turbid slab described by a model based on diffusion approximationI: Theory. Applied Optics, 1997, 36(19): 4587―4599
doi: 10.1364/AO.36.004587
|
| 138 |
Chen B, Stamnes K, Stamnes J J. Validity of the diffusion approximation in bio-optical imaging. Applied Optics , 2001, 40(34): 6356-6366 doi: 10.1364/AO.40.006356
|
|
Chen B, Stamnes K, Stamnes J J. Validity of the diffusionapproximation in bio-optical imaging. AppliedOptics, 2001, 40(34): 6356―6366
doi: 10.1364/AO.40.006356
|
| 139 |
Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics , 1993, 32(4): 559-568
|
|
Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid media byusing the adding-doubling method. AppliedOptics, 1993, 32(4): 559―568
|
| 140 |
Marchesini R, Bertoni A, Andreola S, . Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Applied Optics , 1989, 28(12): 2318-2324
|
|
Marchesini R, Bertoni A, Andreola S, et al. Extinction and absorption coefficients and scatteringphase functions of human tissues in vitro. Applied Optics, 1989, 28(12): 2318―2324
|
| 141 |
Pickering J W, Prahl S A, van Wieringen N, . Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics , 1993, 32(4): 399-410
|
|
Pickering J W, Prahl S A, van Wieringen N, et al. Double-integrating-sphere systemfor measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399―410
|
| 142 |
Zhu D, Lu W, Zeng S, . Effect of light losses of sample between two integrating spheres on optical properties estimation. Journal for Biomedical Optics , 2007, 12(6): 064004 doi: 10.1117/1.2815691
|
|
Zhu D, Lu W, Zeng S, et al. Effect of lightlosses of sample between two integrating spheres on optical propertiesestimation. Journal for Biomedical Optics, 2007, 12(6): 064004
doi: 10.1117/1.2815691
|
| 143 |
Sardar D K, Mayo M. L, Glickman R D. Optical characterization of melanin. Journal for Biomedical Optics , 2001, 6(4): 404-411 doi: 10.1117/1.1411978
|
|
Sardar D K, Mayo M. L, Glickman R D. Optical characterizationof melanin. Journal for Biomedical Optics, 2001, 6(4): 404―411
doi: 10.1117/1.1411978
|
| 144 |
Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics , 1990, 26(12): 2166-2185 doi: 10.1109/3.64354
|
|
Cheong W F, Prahl S A, Welch A J. A review of the optical propertiesof biological tissues. IEEE Journal ofQuantum Electronics, 1990, 26(12): 2166―2185
doi: 10.1109/3.64354
|
| 145 |
Bashkatov A N, Genina E A, Kochubey V I, . Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics , 2005, 38: 2343-2355 doi: 10.1088/0022-3727/38/15/004
|
|
Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of human skin, subcutaneous and mucous tissuesin the wavelength range from 400 to 2000?nm. Journal of Physics D: Applied Physics, 2005, 38: 2343―2355
doi: 10.1088/0022-3727/38/15/004
|
| 146 |
Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Journal of Biomedical Optics , 2001, 6(2): 167-176 doi: 10.1117/1.1344191
|
|
Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelengthrange of 1000 to 2200?nm. Journalof Biomedical Optics, 2001, 6(2): 167―176
doi: 10.1117/1.1344191
|
| 147 |
Wang L, Jacques L S, Zheng L. MCML- Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine , 1995, 47(2): 131-146 doi: 10.1016/0169-2607(95)01640-F
|
|
Wang L, Jacques L S, Zheng L. MCML- Monte Carlo modelingof light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine, 1995, 47(2): 131―146
doi: 10.1016/0169-2607(95)01640-F
|
| 148 |
Liu Q, Ramanujam N. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied Optics , 2006, 45(19): 4776-4790 doi: 10.1364/AO.45.004776
|
|
Liu Q, Ramanujam N. Sequentialestimation of optical properties of a two-layered epithelial tissuemodel from depth-resolved ultraviolet-visible diffuse reflectancespectra. Applied Optics, 2006, 45(19): 4776―4790
doi: 10.1364/AO.45.004776
|
| 149 |
Weidner V R, Hsia J J, Adams B. Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Applied Optics , 1985, 24(14): 2225-2230
|
|
Weidner V R, Hsia J J, Adams B. Laboratory intercomparison study of pressed polytetrafluoroethylenepowder reflectance standards. Applied Optics, 1985, 24(14): 2225―2230
|
| 150 |
Bruegge C J, Stiegman A E, Rainen R A, . Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors. Optical Engineering , 1993, 32(4): 805-814 doi: 10.1117/12.132373
|
|
Bruegge C J, Stiegman A E, Rainen R A, et al. Use of Spectralonas a diffuse reflectance standard for in-flight calibration of earth-orbitingsensors. Optical Engineering, 1993, 32(4): 805―814
doi: 10.1117/12.132373
|
| 151 |
Courreges-Lacoste G B, Schaarsberg J, Sprik R, . Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering , 2003, 42(12): 3600-3607 doi: 10.1117/1.1622961
|
|
Courreges-Lacoste G B, Schaarsberg J, Sprik R, et al. Modelingof Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 2003, 42(12): 3600―3607
doi: 10.1117/1.1622961
|
| 152 |
McGuckin B T, Haner D A, Menzies R T. Multiangle imaging spectroradiometer: optical characterization of the calibration panels. Applied Optics , 1997, 36(27): 7016-7022 doi: 10.1364/AO.36.007016
|
|
McGuckin B T, Haner D A, Menzies R T. Multiangle imaging spectroradiometer: optical characterization ofthe calibration panels. Applied Optics, 1997, 36(27): 7016―7022
doi: 10.1364/AO.36.007016
|
| 153 |
Stiegman A E, Bruegge C J, Springsteen A W. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Optical Engineering , 1993, 32(4): 799-804 doi: 10.1117/12.132374
|
|
Stiegman A E, Bruegge C J, Springsteen A W. Ultraviolet stability and contamination analysis of Spectralon diffusereflectance material. Optical Engineering, 1993, 32(4): 799―804
doi: 10.1117/12.132374
|
| 154 |
Fairchild M D, Daoust D J O. Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Applied Optics , 1988, 27(16): 3392-3396
|
|
Fairchild M D, Daoust D J O. Goniospectrophotometric analysisof pressed PTFE powder for use as a primary transfer standard. Applied Optics, 1988, 27(16): 3392―3396
|
| 155 |
Kim C S, Kong H J. Rapid absolute diffuse spectral reflectance factor measurements using a silicon-photodiode array. Color Research and Application , 1997, 22(4): 275-279 doi: 10.1002/(SICI)1520-6378(199708)22:4<275::AID-COL8>3.0.CO;2-M
|
|
Kim C S, Kong H J. Rapid absolute diffuse spectral reflectancefactor measurements using a silicon-photodiode array. Color Research and Application, 1997, 22(4): 275―279
doi: 10.1002/(SICI)1520-6378(199708)22:4<275::AID-COL8>3.0.CO;2-M
|
| 156 |
Sadhwani A, Schomacker K T, Tearney G J, . Determination of Teflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics , 1996, 35(28): 5727-5735 doi: 10.1364/AO.35.005727
|
|
Sadhwani A, Schomacker K T, Tearney G J, et al. Determination ofTeflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics, 1996, 35(28): 5727―5735
doi: 10.1364/AO.35.005727
|
| 157 |
Early E A, Barnes P Y, Johnson B C, . Bidirectional reflectance round-robin in support of the earth observing system program. Journal of Atmospheric and Oceanic Technology , 1999, 17: 1077-1091 doi: 10.1175/1520-0426(2000)017<1077:BRRRIS>2.0.CO;2
|
|
Early E A, Barnes P Y, Johnson B C, et al. Bidirectional reflectance round-robin in support of the earth observingsystem program. Journal of Atmosphericand Oceanic Technology, 1999, 17: 1077―1091
doi: 10.1175/1520-0426(2000)017<1077:BRRRIS>2.0.CO;2
|
| 158 |
Huber N, Heitz J, Bauerle D. Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics , 2004, 25(1): 33-38 doi: 10.1051/epjap:2003083
|
|
Huber N, Heitz J, Bauerle D. Pulsed-laser ablation ofpolytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics, 2004, 25(1): 33―38
doi: 10.1051/epjap:2003083
|
| 159 |
Li Q, Lee B J, Zhang Z M, . Light scattering of semitransparent sintered polytetrafluoroethylene films. Journal of Biomedical Optics , 2008, 13(5): 054064-1 /12
|
|
Li Q, Lee B J, Zhang Z M, et al. Light scattering of semitransparent sinteredpolytetrafluoroethylene films. Journalof Biomedical Optics, 2008, 13(5): 054064―1/12
|
| 160 |
Caron J, Andraud C, Lafait J. Radiative transfer calculations in multilayer systems with smooth and rough interfaces. Journal of Modern Optics , 2004, 51(4): 575-595 doi: 10.1080/09500340408238069
|
|
Caron J, Andraud C, Lafait J. Radiative transfer calculationsin multilayer systems with smooth and rough interfaces. Journal of Modern Optics, 2004, 51(4): 575―595
doi: 10.1080/09500340408238069
|
| 161 |
Pak K, Tsang L, Li L, . Combined random rough surface and volume scattering based on Monte Carlo simulations of solutions of Maxwell’s equations. Radio Science , 1993, 28(3): 331-338 doi: 10.1029/93RS00275
|
|
Pak K, Tsang L, Li L, et al. Combined randomrough surface and volume scattering based on Monte Carlo simulationsof solutions of Maxwell’s equations. Radio Science, 1993, 28(3): 331―338
doi: 10.1029/93RS00275
|
| 162 |
Sentenac A, Giovannini H, Saillard M. Scattering from rough inhomogeneous media: splitting of surface and volume scattering. Journal of the Optical Society of America A , 2002, 19(4): 727-736 doi: 10.1364/JOSAA.19.000727
|
|
Sentenac A, Giovannini H, Saillard M. Scattering from rough inhomogeneousmedia: splitting of surface and volume scattering. Journal of the Optical Society of America A, 2002, 19(4): 727―736
doi: 10.1364/JOSAA.19.000727
|