Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2009, Vol. 3 Issue (1) : 60-79    https://doi.org/10.1007/s11708-009-0011-3
REVIEW ARTICLE
Radiative properties of materials with surface scattering or volume scattering: A review
Qunzhi ZHU1(), Hyunjin LEE2, Zhuomin M. HANG3
1. School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. Samsung Corning Precision Glass Co., theRepublic of Korea; 3. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 Download: PDF(625 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

Keywords aerogel      fiber      particle scattering      radiative properties      soot      surface roughness     
Corresponding Author(s): ZHU Qunzhi,Email:zhuqunzhi@shiep.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Qunzhi ZHU,Hyunjin LEE,Zhuomin M. HANG. Radiative properties of materials with surface scattering or volume scattering: A review[J]. Front Energ Power Eng Chin, 2009, 3(1): 60-79.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0011-3
https://academic.hep.com.cn/fie/EN/Y2009/V3/I1/60
Fig.1  Global coordinates for definition of BRDF
Fig.2  AFM surface image []
Fig.3  Schematic of nodal network for slope calculation []
Fig.4  2D slope distribution functions
(a) Si-1; (b) Si-2 []
Fig.5  Schematic of TAAS
Fig.6  Schematic of setup for spectral radiative property measurements []
Fig.7  In-plane BRDFs of Si-1 for random polarization []
(a) =0°, =0°; (b) =0°, =45°
Fig.8  In-plane BRDFs of Si-2 for random polarization []
(a) =0°, =0°; (b) =0°, =45°
Fig.9  Out-of-plane BRDFs of Si-2 for s-polarization []
(a) Experiment; (b) SGM simulation
Fig.10  In-plane BROFs of Si-2 with different coating thicknesses for random polarizationat normal incidence [[
(a) =0; (b) =107.2 nm; (c) =216.5 nm; (d) =324.6 nm
Fig.11  Emittance of Si-1 and Si-2 at near normal incidence
(a) Si-1; (b) Si-2 []
Fig.12  Transmittances of silica aerogel slab at normal incidence []
Fig.13  Directional-hemispherical
(a) reflectance; (b) transmittance of four PTFE films measured with an integrating sphere at normal incidence; (c) reduced scattering coefficient determined from -to- ratio []
1 Modest M F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003
Modest M F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003
Zhang Z M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer, New York: Begell House, 2000, 51―411
2 Zhang Z M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer , New York: Begell House, 2000, 51-411
Timans P J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by RoozeboomF), Dordrecht, Netherlands: Academic Publishers, 1996, 35―102
3 Timans P J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by Roozeboom F), Dordrecht , Netherlands: Academic Publishers , 1996, 35-102
4 Wen C D, Mudawar I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer , 2004, 47(17, 18): 3591-3605
Wen C D, Mudawar I. Emissivity characteristicsof roughened aluminum alloy surfaces and assessment of multispectralradiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2004, 47(17, 18): 3591―3605
5 Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. Norwood, MA: Artech House, 1987
Beckmann P, Spizzichino A. The Scattering of ElectromagneticWaves from Rough Surfaces. Norwood, MA: Artech House, 1987
6 Saillard M, Sentenac A. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media , 2001, 11(3): R103-R137
doi: 10.1088/0959-7174/11/3/201
Saillard M, Sentenac A. Rigoroussolutions for electromagnetic scattering from rough surfaces. Waves Random Media, 2001, 11(3): R103―R137

doi: 10.1088/0959-7174/11/3/201
7 Warnick K F, Chew W C. Numerical simulation methods for rough surface scattering. Waves Random Media , 2001, 11(1): R1-R30
doi: 10.1088/0959-7174/11/1/201
Warnick K F, Chew W C. Numerical simulation methods for rough surface scattering. Waves Random Media, 2001, 11(1): R1―R30

doi: 10.1088/0959-7174/11/1/201
8 Macaskill C. Geometric optics and enhanced backscatter from very rough surfaces. Journal of the Optical Society of America A , 1991, 8(1): 88-96
doi: 10.1364/JOSAA.8.000088
Macaskill C. Geometric optics and enhanced backscatterfrom very rough surfaces. Journal of theOptical Society of America A, 1991, 8(1): 88―96

doi: 10.1364/JOSAA.8.000088
9 Tang K, Buckius R O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer , 2001, 44(21): 4059-4073
doi: 10.1016/S0017-9310(01)00050-3
Tang K, Buckius R O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer, 2001, 44(21): 4059―4073

doi: 10.1016/S0017-9310(01)00050-3
10 Zhou Y H, Shen Y J, Zhang Z M, . A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces. International Journal of Heat and Mass Transfer , 2002, 45(9): 1945-1949
doi: 10.1016/S0017-9310(01)00295-2
Zhou Y H, Shen Y J, Zhang Z M, et al. A Monte Carlo modelfor predicting the effective emissivity of the silicon wafer in rapidthermal processing furnaces. InternationalJournal of Heat and Mass Transfer, 2002, 45(9): 1945―1949

doi: 10.1016/S0017-9310(01)00295-2
11 Prokhorov A V, Hanssen L M. Algorithmic model of microfacet BRDF for Monte Carlo calculation of optical radiation transfer. SPIE , 2003, 5192: 141-157
doi: 10.1117/12.508577
Prokhorov A V, Hanssen L M. Algorithmic model of microfacet BRDF for Monte Carlocalculation of optical radiation transfer. SPIE, 2003, 5192: 141―157

doi: 10.1117/12.508577
12 Zhu Q Z, Zhang Z M. Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface. Journal of Heat Transfer , 2004, 126(6): 985-993
doi: 10.1115/1.1795244
Zhu Q Z, Zhang Z M. Anisotropic slope distribution and bidirectional reflectance of arough silicon surface. Journal of HeatTransfer, 2004, 126(6): 985―993

doi: 10.1115/1.1795244
13 Lee H J, Lee B J, Zhang Z M. Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & Radiative Transfer , 2005, 93(1-3): 185-194
doi: 10.1016/j.jqsrt.2004.08.021
Lee H J, Lee B J, Zhang Z M. Modeling the radiative propertiesof semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2005, 93(1―3): 185―194

doi: 10.1016/j.jqsrt.2004.08.021
14 Guérin C A. Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Waves Random Media , 2002, 12(3): 293-306
doi: 10.1088/0959-7174/12/3/303
Guérin C A. Scattering on rough surfaceswith alpha-stable non-Gaussian height distributions. Waves Random Media, 2002, 12(3): 293―306

doi: 10.1088/0959-7174/12/3/303
15 Viskanta R, Mengü? M P. Radiative transfer in dispersed media. Applied Mechanics Reviews , 1989, 42(9): 241-259
Viskanta R, Mengüç M P. Radiative transfer in dispersed media. Applied Mechanics Reviews, 1989, 42(9): 241―259
16 Tong T W, Swathi P S. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation , 1987, 11: 7-31
Tong T W, Swathi P S. Examination of the radiativeproperties of coated silica fibers. Journalof Thermal Insulation, 1987, 11: 7―31
17 Baillis D, Sacadura J F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy & Radiative Transfer , 2000, 67(5): 327-363
doi: 10.1016/S0022-4073(99)00234-4
Baillis D, Sacadura J F. Thermal radiation properties of dispersed media: theoretical predictionand experimental characterization. Journalof Quantitative Spectroscopy & Radiative Transfer, 2000, 67(5): 327―363

doi: 10.1016/S0022-4073(99)00234-4
18 Viskanta R, Mengü? M P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science , 1987, 13(2): 97-160
doi: 10.1016/0360-1285(87)90008-6
Viskanta R, Mengüç M P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science, 1987, 13(2): 97―160

doi: 10.1016/0360-1285(87)90008-6
19 Fricke J, Emmerling A. Aerogels. Journal of the American Ceramic Society , 1992, 75(8): 2027-2036
doi: 10.1111/j.1151-2916.1992.tb04461.x
Fricke J, Emmerling A. Aerogels. Journal of the AmericanCeramic Society, 1992, 75(8): 2027―2036

doi: 10.1111/j.1151-2916.1992.tb04461.x
20 Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer , 2005, 48(7): 1316-1329
doi: 10.1016/j.ijheatmasstransfer.2004.10.003
Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloysurfaces and assessment of multispectral radiation thermometry (MRT)emissivity models. International Journalof Heat and Mass Transfer, 2005, 48(7): 1316―1329

doi: 10.1016/j.ijheatmasstransfer.2004.10.003
21 Schietinger C. Wafer temperature measurement in RTP. In: Roozeboom F, ed. Advances in Rapid Thermal and Integrated Processing, Dordrecht , Netherlands: Academic Publishers, 1996, 103-123
Schietinger C. Wafertemperature measurement in RTP. In: RoozeboomF, ed. Advancesin Rapid Thermal and Integrated Processing, Dordrecht, Netherlands: Academic Publishers, 1996, 103―123
22 Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002
Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002
23 Zhang Z M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007
Zhang Z M. Nano/Microscale Heat Transfer. NewYork: McGraw-Hill, 2007
24 Priest R G, Germer T A. Polarimetric BRDF in the microfacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors , 2000, 1: 169-181
Priest R G, Germer T A. Polarimetric BRDF in themicrofacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia SpecialtyGroup on Passive Sensors, 2000, 1: 169―181
25 Feng W W, Wei Q N, Wang S M, . Numerical simulation of polarized Bidirectional Reflectance Distribution Function (BRDF) based on micro-facet model. SPIE , 2008, 6622: 66220A
doi: 10.1117/12.790729
Feng W W, Wei Q N, Wang S M, et al. Numerical simulationof polarized Bidirectional Reflectance Distribution Function (BRDF)based on micro-facet model. SPIE, 2008, 6622: 66220A

doi: 10.1117/12.790729
26 Ogilvy J A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991
Ogilvy J A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991
27 Shen Y J, Zhang Z M, Tsai B K, . Bidirectional reflectance distribution function of rough silicon wafers. International Journal of Thermophysics , 2001, 22(4): 1311-1326
doi: 10.1023/A:1010636914347
Shen Y J, Zhang Z M, Tsai B K, et al. Bidirectional reflectancedistribution function of rough silicon wafers. International Journal of Thermophysics, 2001, 22(4): 1311―1326

doi: 10.1023/A:1010636914347
28 Zhang Z M, Fu C J, Zhu Q Z. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer , 2003, 37: 179-296
Zhang Z M, Fu C J, Zhu Q Z. Optical and thermal radiative properties of semiconductorsrelated to micro/nanotechnology. Advancesin Heat Transfer, 2003, 37: 179―296
29 Stover J. Optical Scattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995
Stover J. OpticalScattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995
30 Zhu Q Z, Zhang Z M. Correlation of angle-resolved light scattering with the microfacet orientation of rough silicon surfaces. Optical Engineering , 2005, 44(7): 073601
doi: 10.1117/1.1948816
Zhu Q Z, Zhang Z M. Correlation of angle-resolved light scattering with the microfacetorientation of rough silicon surfaces. Optical Engineering, 2005, 44(7): 073601

doi: 10.1117/1.1948816
31 Lee H J, Chen Y B, Zhang Z M. Directional radiative properties of anisotropic rough silicon and gold surfaces. International Journal of Heat and Mass Transfer , 2006, 49(23-24): 4482-4495
Lee H J, Chen Y B, Zhang Z M. Directional radiative properties of anisotropic roughsilicon and gold surfaces. InternationalJournal of Heat and Mass Transfer, 2006, 49(23―24): 4482―4495
32 Resnik D, Vrtacnik D, Amon S. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. Journal of Micromechanics and Microengineering , 2000, 10(3): 430-439
doi: 10.1088/0960-1317/10/3/319
Resnik D, Vrtacnik D, Amon S. Morphological study of {311}crystal planes anisotropically etched in (100) silicon: role of etchantsand etching parameters. Journal of Micromechanicsand Microengineering, 2000, 10(3): 430―439

doi: 10.1088/0960-1317/10/3/319
33 O'Donnell K A, Mendez E R. Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A , 1987, 4(7): 1194-1205
doi: 10.1364/JOSAA.4.001194
O'Donnell K A, Mendez E R. Experimental study of scattering from characterized randomsurfaces. Journal of the Optical Societyof America A, 1987, 4(7): 1194―1205

doi: 10.1364/JOSAA.4.001194
34 Nieto-Vesperinas M, Soto-Crespo J M. Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters , 1987, 12(12): 979-981
doi: 10.1364/OL.12.000979
Nieto-Vesperinas M, Soto-Crespo J M. Monte Carlo simulations for scatteringof electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters, 1987, 12(12): 979―981

doi: 10.1364/OL.12.000979
35 Maradudin A A, Michel T, McGurn A R, . Enhanced backscattering of light from a random grating. Annals of Physics , 1990, 203(2): 255-307
doi: 10.1016/0003-4916(90)90172-K
Maradudin A A, Michel T, McGurn A R, et al. Enhanced backscattering of light from a random grating. Annals of Physics, 1990, 203(2): 255―307

doi: 10.1016/0003-4916(90)90172-K
36 Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectric surfaces. Journal of the Optical Society of America A , 1991, 8(8): 1270-1286
doi: 10.1364/JOSAA.8.001270
Sanchez-Gil J A, Nieto-Vesperinas M. Light scattering from random rough dielectricsurfaces. Journal of the Optical Societyof America A, 1991, 8(8): 1270―1286

doi: 10.1364/JOSAA.8.001270
37 Lu J Q, Maradudin A A, Michel T. Enhanced backscattering from a rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B , 1991, 8(2): 311-318
doi: 10.1364/JOSAB.8.000311
Lu J Q, Maradudin A A, Michel T. Enhanced backscattering froma rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B, 1991, 8(2): 311―318

doi: 10.1364/JOSAB.8.000311
38 Gu Z H, Lu J Q. Maradudin A A. Enhanced backscattering from a rough dielectric film on a glass substrate. Journal of the Optical Society of America A , 1993, 10(8): 1753-1764
doi: 10.1364/JOSAA.10.001753
Gu Z H, Lu J Q. Maradudin A A. Enhanced backscattering froma rough dielectric film on a glass substrate. Journal of the Optical Society of America A, 1993, 10(8): 1753―1764

doi: 10.1364/JOSAA.10.001753
39 Fu K, Hsu P F. Modeling the radiative properties microscale random roughness surfaces. Journal of Heat Transfer , 2007, 129(1): 71-78
doi: 10.1115/1.2401200
Fu K, Hsu P F. Modelingthe radiative properties microscale random roughness surfaces. Journal of Heat Transfer, 2007, 129(1): 71―78

doi: 10.1115/1.2401200
40 Lettieri T R, Marx E, Song J F, . Light scattering from glossy coatings on paper. Applied Optics , 1991, 30(30): 4439-4447
Lettieri T R, Marx E, Song J F, et al. Light scattering from glossy coatings on paper. Applied Optics, 1991, 30(30): 4439―4447
41 Tang K, Kawka P A, Buckius R O. Geometric optics applied to rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer , 1999, 13(2): 169-176
doi: 10.2514/2.6427
Tang K, Kawka P A, Buckius R O. Geometric optics appliedto rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 169―176

doi: 10.2514/2.6427
42 Icart I, Arques D. Simulation of the optical behavior of rough identical multilayer. SPIE , 2000, 4100: 84-95
doi: 10.1117/12.401648
Icart I, Arques D. Simulationof the optical behavior of rough identical multilayer. SPIE, 2000, 4100: 84―95

doi: 10.1117/12.401648
43 Elfouhaily T M, Guérin C A. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media , 2004, 14(4): R1-R40
doi: 10.1088/0959-7174/14/4/R01
Elfouhaily T M, Guérin C A. A critical survey of approximate scatteringwave theories from random rough surfaces. Waves Random Media, 2004, 14(4): R1―R40

doi: 10.1088/0959-7174/14/4/R01
44 Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America , 1988, 83(1): 78-92
doi: 10.1121/1.396188
Thorsos E I. The validity of the Kirchhoff approximationfor rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, 83(1): 78―92

doi: 10.1121/1.396188
45 Soto-Crespo J M, Nieto-Vesperinas M, Friberg A T. Scattering from slightly rough random surfaces-a detailed study on the validity of the small perturbation method. Journal of the Optical Society of America A , 1990, 7(7): 1185-1201
doi: 10.1364/JOSAA.7.001185
Soto-Crespo J M, Nieto-Vesperinas M, Friberg A T. Scattering from slightly rough random surfaces―a detailedstudy on the validity of the small perturbation method. Journal of the Optical Society of America A, 1990, 7(7): 1185―1201

doi: 10.1364/JOSAA.7.001185
46 Tang K, Dimenna R A, Buckius R O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. International Journal of Heat and Mass Transfer , 1997, 40(1): 49-59
doi: 10.1016/S0017-9310(96)00073-7
Tang K, Dimenna R A, Buckius R O. Regions of validity of thegeometric optics approximation for angular scattering from very roughsurfaces. International Journal of Heatand Mass Transfer, 1997, 40(1): 49―59

doi: 10.1016/S0017-9310(96)00073-7
47 Fu K, Hsu P F. New regime map of the geometric optics approximation for scattering from random rough surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer , 2008, 109(2): 180-188
doi: 10.1016/j.jqsrt.2007.08.019
Fu K, Hsu P F. New regimemap of the geometric optics approximation for scattering from randomrough surfaces. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2008, 109(2): 180―188

doi: 10.1016/j.jqsrt.2007.08.019
48 Zhou Y H, Zhang Z M. Radiative properties of semitransparent silicon wafers with rough surfaces. Journal of Heat Transfer , 2003, 125(3): 462-470
doi: 10.1115/1.1565089
Zhou Y H, Zhang Z M. Radiative properties of semitransparent silicon wafers with roughsurfaces. Journal of Heat Transfer, 2003, 125(3): 462―470

doi: 10.1115/1.1565089
49 Zhu Q Z, Lee H J, Zhang Z M. The validity of using thin-film optics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer , 2005, 19: 548-555
doi: 10.2514/1.13595
Zhu Q Z, Lee H J, Zhang Z M. The validity of using thin-filmoptics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer, 2005, 19: 548―555

doi: 10.2514/1.13595
50 Lee H J, Zhang Z M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. International Journal of Thermophysics , 2006, 27(3): 820-839
doi: 10.1007/s10765-006-0055-0
Lee H J, Zhang Z M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. InternationalJournal of Thermophysics, 2006, 27(3): 820―839

doi: 10.1007/s10765-006-0055-0
51 Bruce N C. Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A , 1997, 14(8): 1850-1858
doi: 10.1364/JOSAA.14.001850
Bruce N C. Scattering of light from surfaces withone-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A, 1997, 14(8): 1850―1858

doi: 10.1364/JOSAA.14.001850
52 Lee H J, Zhang Z M. Applicability of phase ray-tracing method for light scattering from rough surfaces. Journal of Thermophysics and Heat Transfer , 2007, 21: 330-336
doi: 10.2514/1.26191
Lee H J, Zhang Z M. Applicability of phase ray-tracing method for light scattering fromrough surfaces. Journal of Thermophysicsand Heat Transfer, 2007, 21: 330―336

doi: 10.2514/1.26191
53 Barnes P Y, Early E A, Parr A C. Spectral Reflectance, NIST Special Publication 250-48 . Washington, DC: U.S. Government Printing Office, 1998
Barnes P Y, Early E A, Parr A C. Spectral Reflectance, NIST Special Publication 250―48. Washington, DC: U.S. GovernmentPrinting Office, 1998
54 Shen Y J, Zhu Q Z, Zhang Z M. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments , 2003, 74(11): 4885-4892
doi: 10.1063/1.1614853
Shen Y J, Zhu Q Z, Zhang Z M. A scatterometer for measuringthe bidirectional reflectance and transmittance of semiconductor waferswith rough surfaces. Review of ScientificInstruments, 2003, 74(11): 4885―4892

doi: 10.1063/1.1614853
55 Dai J M, Qi C, Sun X G. Comparison and research for several Bi-directional reflectance distribution function (BRDF) measuring. SPIE , 2003, 5280: 655-660
doi: 10.1117/12.520303
Dai J M, Qi C, Sun X G. Comparison and research forseveral Bi-directional reflectance distribution function (BRDF) measuring. SPIE, 2003, 5280: 655―660

doi: 10.1117/12.520303
56 Zhao Z Y, Qi C, Dai J M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters , 2007, 5(3): 168-171
Zhao Z Y, Qi C, Dai J M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters, 2007, 5(3): 168―171
57 Feng W W, Wei Q N. A scatterometer for measuring the polarized bidirectional reflectance distribution function of painted surfaces in the infrared. Infrared Physics & Technology , 2008, 51: 559-563
doi: 10.1016/j.infrared.2008.08.001
Feng W W, Wei Q N. A scatterometer for measuring the polarized bidirectional reflectancedistribution function of painted surfaces in the infrared. Infrared Physics & Technology, 2008, 51: 559―563

doi: 10.1016/j.infrared.2008.08.001
58 Lee H J, Bryson A C, Zhang Z M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics , 2007, 28(3): 918-933
doi: 10.1007/s10765-007-0192-0
Lee H J, Bryson A C, Zhang Z M. Measurement and modelingof the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918―933

doi: 10.1007/s10765-007-0192-0
59 Ghmari F, Sassi I, Sifaoui M S. Directional hemispherical radiative properties of random dielectric rough surfaces. Waves Random Complex , 2005, 15(4): 469-486
doi: 10.1080/17455030500361838
Ghmari F, Sassi I, Sifaoui M S. Directional hemisphericalradiative properties of random dielectric rough surfaces. Waves Random Complex, 2005, 15(4): 469―486

doi: 10.1080/17455030500361838
60 Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)
Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)
61 Kerker M. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969
Kerker M. TheScattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969
62 Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983
Bohren C F, Huffman D R. Absorption and Scatteringof Light by Small Particles. New York: Wiley, 1983
63 Schuster A. Radiation through foggy atmospheres. The Astrophysical Journal , 1905, 21(1): 1-22
doi: 10.1086/141186
Schuster A. Radiation through foggy atmospheres. The Astrophysical Journal, 1905, 21(1): 1-22

doi: 10.1086/141186
64 Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys , 1931, 12(11a): 593-601
Kubelka P, Munk F. An article on optics of paintlayers. Z Tech Phys, 1931, 12(11a): 593―601
65 Chandrasekhar S. Radiative Transfer. New York: Dover, 1960
Chandrasekhar S. RadiativeTransfer. New York: Dover, 1960
66 Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978 by Academic Press, Vols. 1&2)
Ishimaru A. WavePropagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978by Academic Press, Vols. 1&2)
67 Mishchenko M I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics , 2002, 41(33): 7114-7134
doi: 10.1364/AO.41.007114
Mishchenko M I. Vector radiative transferequation for arbitrarily shaped and arbitrarily oriented particles:a microphysical derivation from statistical electromagnetics. Applied Optics, 2002, 41(33): 7114―7134

doi: 10.1364/AO.41.007114
Tien C L, Drolen B L. Thermal radiation in particulatemedia with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corp, 1987, 1―32
68 Tien C L, Drolen B L. Thermal radiation in particulate media with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer , New York: Hemisphere Publishing Corp, 1987, 1-32
Hapke B. Bidirectional reflectance spectroscopy― I. Theory. Journal of GeophysicalResearch, 1981, 86(B4): 3039―3054

doi: 10.1029/JB086iB04p03039
69 Hapke B. Bidirectional reflectance spectroscopy - I. Theory. Journal of Geophysical Research , 1981, 86(B4): 3039-3054
doi: 10.1029/JB086iB04p03039
70 Kokhanovsky A A, Sokoletsky L G. Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Research and Application , 2006, 31(6): 498-509
doi: 10.1002/col.20263
Kokhanovsky A A, Sokoletsky L G. Reflection of light from semi-infinite absorbing turbidmedia. Part 2: Plane albedo and reflection function. Color Research and Application, 2006, 31(6): 498―509

doi: 10.1002/col.20263
71 Mishchenko M I, Dlugach J M, Yanovitskij E G, . Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer , 1999, 63(4): 409-432
doi: 10.1016/S0022-4073(99)00028-X
Mishchenko M I, Dlugach J M, Yanovitskij E G, et al. Bidirectional reflectance of flat, optically thick particulate layers:an efficient radiative transfer solution and applications to snowand soil surfaces. Journal of QuantitativeSpectroscopy & Radiative Transfer, 1999, 63(4): 409―432

doi: 10.1016/S0022-4073(99)00028-X
72 Williams M M R. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical , 2007, 40(24): 6407-6425
doi: 10.1088/1751-8113/40/24/009
Williams M M R. The searchlight problem inradiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical, 2007, 40(24): 6407―6425

doi: 10.1088/1751-8113/40/24/009
73 Mueller D W, Crosbie A L. Three-dimensional radiative transfer in an anisotropically scattering, plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & Radiative Transfer , 2002, 75(6): 661-721
doi: 10.1016/S0022-4073(02)00028-6
Mueller D W, Crosbie A L. Three-dimensional radiative transfer in an anisotropically scattering,plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2002, 75(6): 661―721

doi: 10.1016/S0022-4073(02)00028-6
74 Mudgett P S, Richards L W. Multiple scattering calculations for technology. Applied Optics , 1971, 10(7): 1485-1502
doi: 10.1364/AO.10.001485
Mudgett P S, Richards L W. Multiple scattering calculations for technology. Applied Optics, 1971, 10(7): 1485―1502

doi: 10.1364/AO.10.001485
75 Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics , 1988, 27(12): 2502-2509
Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stablealgorithm for discrete-ordinate-method radiative transfer in multiplescattering and emitting layered media. Applied Optics, 1988, 27(12): 2502―2509
76 Fivelan W A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. Journal of Thermophysics and Heat Transfer , 1988, 2(4): 309-316
doi: 10.2514/3.105
Fivelan W A. Three-dimensional radiative heat-transfer solutions bythe discrete-ordinates method. Journalof Thermophysics and Heat Transfer, 1988, 2(4): 309―316

doi: 10.2514/3.105
77 Evans K E. Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonic spatial grid method. Journal of the Atmospheric Sciences , 1993, 50(18): 3111-3124
doi: 10.1175/1520-0469(1993)050<3111:TDRTIC>2.0.CO;2
Evans K E. Two-dimensionalradiative transfer in cloudy atmospheres: the spherical harmonic spatialgrid method. Journal of the AtmosphericSciences, 1993, 50(18): 3111―3124

doi: 10.1175/1520-0469(1993)050<3111:TDRTIC>2.0.CO;2
78 Kisselev V B, Roberti L , Perona G. An application of the finite element method to the solution of the radiative transfer equation. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 1994, 51(5-6): 545-663
Kisselev V B, Roberti L , Perona G. An application of the finite element method to the solutionof the radiative transfer equation. Journalof Quantitative Spectroscopy & Radiative Transfer, 1994, 51(5―6): 545―663
79 Liu L H. Finite element simulation of radiative heat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer , 2004, 18(3): 555-557
doi: 10.2514/1.10917
Liu L H. Finite element simulation of radiativeheat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 555―557

doi: 10.2514/1.10917
80 An W, Ruan L M, Qi H, . Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2005, 96(3-4): 409-422
doi: 10.1016/j.jqsrt.2004.12.010
An W, Ruan L M, Qi H, et al. Finite element method for radiativeheat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2005, 96(3―4): 409―422

doi: 10.1016/j.jqsrt.2004.12.010
81 Chai J, Parthasarathy G, Patankar S, . A finite-volume radiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer , 1994, 9(3): 410-415
doi: 10.2514/3.682
Chai J, Parthasarathy G, Patankar S, et al. A finite-volumeradiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer, 1994, 9(3): 410―415

doi: 10.2514/3.682
82 Howell J R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer , 1998, 120(3): 547-560
doi: 10.1115/1.2824310
Howell J R. The Monte Carlo method in radiative heattransfer. Journal of Heat Transfer, 1998, 120(3): 547―560

doi: 10.1115/1.2824310
83 Gjerstad K I, Stamnes J J, Hamre B, . Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Applied Optics , 2003, 42(15): 2609-2622
doi: 10.1364/AO.42.002609
Gjerstad K I, Stamnes J J, Hamre B, et al. MonteCarlo and discrete-ordinate simulations of irradiances in the coupledatmosphere-ocean system. Applied Optics, 2003, 42(15): 2609―2622

doi: 10.1364/AO.42.002609
84 Modest M F. Backward Monte Carlo simulations in radiative heat transfer. Journal of Heat Transfer , 2003, 125(1): 57-62
doi: 10.1115/1.1518491
Modest M F. Backward Monte Carlo simulations in radiativeheat transfer. Journal of Heat Transfer, 2003, 125(1): 57―62

doi: 10.1115/1.1518491
85 Lu X, Hsu P F. Reverse Monte Carlo simulations of ultra-short light pulse propagation within three-dimensional nonhomogeneous media. Journal of Thermophysics and Heat Transfer , 2005, 19(3): 353-359
doi: 10.2514/1.12142
Lu X, Hsu P F. Reverse MonteCarlo simulations of ultra-short light pulse propagation within three-dimensionalnonhomogeneous media. Journal of Thermophysicsand Heat Transfer, 2005, 19(3): 353―359

doi: 10.2514/1.12142
86 Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer , 2007, 129(5): 634-645
doi: 10.1115/1.2712477
Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropicallyscattering layer. Journal of Heat Transfer, 2007, 129(5): 634―645

doi: 10.1115/1.2712477
87 Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2004, 83(3-4): 459-481
doi: 10.1016/S0022-4073(03)00031-1
Zhou H C, Chen D L, Cheng Q. A new way to calculate radiativeintensity and solve radiative transfer equation through using theMonte Carlo method. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2004, 83(3―4): 459―481

doi: 10.1016/S0022-4073(03)00031-1
88 Zhao J M, Liu L H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2007, 107(1): 1-16
doi: 10.1016/j.jqsrt.2007.02.001
Zhao J M, Liu L H. Discontinuous spectral element method for solving radiative heattransfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 1―16

doi: 10.1016/j.jqsrt.2007.02.001
89 Tan H P, Lallemand M. Transient radiative-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions. International Journal of Heat and Mass Transfer , 1989, 32(5): 795-810 .
doi: 10.1016/0017-9310(89)90229-9
Tan H P, Lallemand M. Transientradiative-conductive heat transfer in flat glasses submitted to temperature,flux and mixed boundary conditions. InternationalJournal of Heat and Mass Transfer, 1989, 32(5): 795―810.

doi: 10.1016/0017-9310(89)90229-9
90 Tan H P, Xia X L, Liu L H, . Numerical calculation for Infrared Radiative Characteristics and Transfer- Computational Thermal Radiation. Harbin: Press of the Harbin Institute of Technology, 2006 (in Chinese)
Tan H P, Xia X L, Liu L H, et al. Numerical calculation for Infrared RadiativeCharacteristics and Transfer― Computational Thermal Radiation. Harbin: Pressof the Harbin Institute of Technology, 2006 (in Chinese)
91 Liu L H, Zhao J M, Tan H P. Finite/Spectral Element Methods for Solving Radiative Transfer Equation. Beijing: Science Press, 2008 (in Chinese)
Liu L H, Zhao J M, Tan H P. Finite/Spectral Element Methods for Solving RadiativeTransfer Equation. Beijing: Science Press, 2008 (in Chinese)
92 Mishchenko M I, Hovenier J W, Travis L D, eds. Light Scattering by Nonspherical Particles. San Diego: Academic Press, 2000
Mishchenko M I, Hovenier J W, Travis L D, eds. Light Scattering by NonsphericalParticles. San Diego: Academic Press, 2000
93 Tsang L, Kong J A, Ding K H. Scattering of Electromagnetic Waves-Theories and Applications, New York: Wiley, 2000
doi: 10.1002/0471224286
Tsang L, Kong J A, Ding K H. Scattering of ElectromagneticWaves―Theories and Applications, New York: Wiley, 2000

doi: 10.1002/0471224286
94 Kahnert F M. Numerical method in electromagnetic scattering theory. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2003, 79-80(7): 775-824
doi: 10.1016/S0022-4073(02)00321-7
Kahnert F M. Numerical method in electromagnetic scatteringtheory. Journal of Quantitative Spectroscopy& Radiative Transfer, 2003, 79―80(7): 775―824

doi: 10.1016/S0022-4073(02)00321-7
95 Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain method. 3rd ed. Boston MA: Artech House, 2005
Taflove A, Hagness S C. Computational Electrodynamics:the Finite-Difference Time-Domain method. 3rded. Boston MA: Artech House, 2005
96 Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A , 1994, 11(4): 1491-1499
doi: 10.1364/JOSAA.11.001491
Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 1994, 11(4): 1491―1499

doi: 10.1364/JOSAA.11.001491
97 Wang K Y, Tien C L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer , 1983, 30(3): 213-223
doi: 10.1016/0022-4073(83)90059-6
Wang K Y, Tien C L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and RadiativeTransfer, 1983, 30(3): 213―223

doi: 10.1016/0022-4073(83)90059-6
98 Lee S C. Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer , 1989, 32(2): 311-319
doi: 10.1016/0017-9310(89)90178-6
Lee S C. Effect of fiber orientation on thermalradiation in fibrous media. InternationalJournal of Heat and Mass Transfer, 1989, 32(2): 311―319

doi: 10.1016/0017-9310(89)90178-6
99 Dombrovsky L A. Quartz-fiber thermal insulation: infrared radiative properties and calculation of radiative-conductive heat transfer. Journal of Heat Transfer , 1996, 118(2): 408-414
doi: 10.1115/1.2825859
Dombrovsky L A. Quartz-fiber thermal insulation:infrared radiative properties and calculation of radiative-conductiveheat transfer. Journal of Heat Transfer, 1996, 118(2): 408―414

doi: 10.1115/1.2825859
100 Lee S C. Radiative transfer through a fibrous medium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer , 1986, 36(3): 253-263
doi: 10.1016/0022-4073(86)90073-7
Lee S C. Radiative transfer through a fibrousmedium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 36(3): 253―263

doi: 10.1016/0022-4073(86)90073-7
101 Yamada J, Kurosaki Y. Radiative characteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer , 2000, 43(6): 981-991
doi: 10.1016/S0017-9310(99)00195-7
Yamada J, Kurosaki Y. Radiativecharacteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer, 2000, 43(6): 981―991

doi: 10.1016/S0017-9310(99)00195-7
102 Coquard R, Baillis D. Radiative properties of dense fibrous medium containing fibers in the geometric limit. Journal of Heat Transfer , 2006, 128(10): 1022-1030
doi: 10.1115/1.2345426
Coquard R, Baillis D. Radiativeproperties of dense fibrous medium containing fibers in the geometriclimit. Journal of Heat Transfer, 2006, 128(10): 1022―1030

doi: 10.1115/1.2345426
103 Tian W, Huang W, Chiu W K S. Thermal radiative properties of a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer , 2007, 129(6): 763-767
doi: 10.1115/1.2717247
Tian W, Huang W, Chiu W K S. Thermal radiative propertiesof a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer, 2007, 129(6): 763―767

doi: 10.1115/1.2717247
104 Lee S C. Effective propagation constant of fibrous media containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer , 1992, 114(2): 473-478
doi: 10.1115/1.2911297
Lee S C. Effective propagation constant of fibrousmedia containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer, 1992, 114(2): 473―478

doi: 10.1115/1.2911297
105 Lee S C. Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer , 1994, 8(4): 641-646
doi: 10.2514/3.593
Lee S C. Dependent vs independent scattering in fibrous compositescontaining parallel fibers. Journal ofThermophysics and Heat Transfer, 1994, 8(4): 641―646

doi: 10.2514/3.593
106 Lee S C. Scattering by a dense layer of infinite cylinders at normal incidence. Journal of the Optical Society of America , 2008, 25(5): 1022-1029
doi: 10.1364/JOSAA.25.001022
Lee S C. Scattering by a dense layer of infinitecylinders at normal incidence. Journalof the Optical Society of America, 2008, 25(5): 1022―1029

doi: 10.1364/JOSAA.25.001022
107 Lee S C. Scattering by a dense finite layer of infinite cylinders at oblique incidence. Journal of the Optical Society of America A , 2008, 25(10): 2489-2498
doi: 10.1364/JOSAA.25.002489
Lee S C. Scattering by a dense finite layer ofinfinite cylinders at oblique incidence. Journal of the Optical Society of America A, 2008, 25(10): 2489―2498

doi: 10.1364/JOSAA.25.002489
108 Wang K Y, Kumar S, Tien C L. Radiative transfer in thermal insulations of hollow and coated fibers. Journal of Thermophysics and Heat Transfer , 1987, (1): 289-295
doi: 10.2514/3.42
Wang K Y, Kumar S, Tien C L. Radiative transfer in thermal insulationsof hollow and coated fibers. Journal ofThermophysics and Heat Transfer, 1987, (1): 289―295

doi: 10.2514/3.42
109 Yang L L, He X D, He F. ITO coated quartz fibers for heat radiative applications. Materials Letters , 2008, 62(30): 4539-4541
doi: 10.1016/j.matlet.2008.08.033
Yang L L, He X D, He F. ITO coated quartz fibersfor heat radiative applications. MaterialsLetters, 2008, 62(30): 4539―4541

doi: 10.1016/j.matlet.2008.08.033
110 Yan Changhai, Meng Songhe, Chen Guiqing, . Research on nanocomposite material coating on fibrous insulations. Materials Review , 2006, 20(4): 33-135 (in Chinese)
Yan Changhai, Meng Songhe, Chen Guiqing, et al. Research on nanocomposite material coating onfibrous insulations. Materials Review, 2006, 20(4): 33―135 (in Chinese)
111 Papini M. Influence of the orientation of polypropylene fibers on their radiative properties. Applied Spectroscopy , 1994, 48(4): 472-476
doi: 10.1366/000370294775268875
Papini M. Influence of the orientation of polypropylenefibers on their radiative properties. AppliedSpectroscopy, 1994, 48(4): 472―476

doi: 10.1366/000370294775268875
112 Yamada J. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2002, 73(2-5): 261-272
doi: 10.1016/S0022-4073(01)00217-5
Yamada J. Radiative properties of fibers with non-circularcross sectional shapes. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2002, 73(2―5): 261―272

doi: 10.1016/S0022-4073(01)00217-5
113 Manickavasagam S, Mengü? M P. Scattering matrix elements of fractal-like soot agglomerates. Applied Optics , 1997, 36(6): 1337-1351
doi: 10.1364/AO.36.001337
Manickavasagam S, Mengüç M P. Scattering matrix elementsof fractal-like soot agglomerates. AppliedOptics, 1997, 36(6): 1337―1351

doi: 10.1364/AO.36.001337
114 Zhu Jinyu, Choi M Y, Mulholland G W. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute , 2002, 29: 2367-2374
doi: 10.1016/S1540-7489(02)80288-7
Zhu Jinyu, Choi M Y, Mulholland G W. Measurement of visible andnear-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute, 2002, 29: 2367―2374

doi: 10.1016/S1540-7489(02)80288-7
115 Lei C X, Li F L, Liu C D, . Light scattering properties of soot aggregates. The Journal of Light Scattering , 2006, 18(3): 261-266
Lei C X, Li F L, Liu C D, et al. Light scattering properties of soot aggregates. The Journal of Light Scattering, 2006, 18(3): 261―266
116 Huang C J, Liu Y F, Wu Z S. Numerical calculation of optical cross section and scattering matrix for soot aggregation particle. Acta Physica Sinica , 2007, 56(7): 4068-4074 (in Chinese)
Huang C J, Liu Y F, Wu Z S. Numerical calculation of optical cross section and scatteringmatrix for soot aggregation particle. ActaPhysica Sinica, 2007, 56(7): 4068―4074 (in Chinese)
117 Liu L, Mishchenko M I, Arnott W P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2008, 109(15): 2656-2663
doi: 10.1016/j.jqsrt.2008.05.001
Liu L, Mishchenko M I, Arnott W P. A study of radiative propertiesof fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & RadiativeTransfer, 2008, 109(15): 2656―2663

doi: 10.1016/j.jqsrt.2008.05.001
118 Dobbins R A, Megaridis M. Absorption and scattering of light by polydisperse aggregates. Applied Optics , 1991, 30(33): 4747-4754
Dobbins R A, Megaridis M. Absorption and scatteringof light by polydisperse aggregates. AppliedOptics, 1991, 30(33): 4747―4754
119 Liu L, Mishchenko M I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2007, 106(1-3): 262-273
doi: 10.1016/j.jqsrt.2007.01.020
Liu L, Mishchenko M I. Scattering and radiative properties of complex soot and soot-containingaggregate particles. Journal of QuantitativeSpectroscopy & Radiative Transfer, 2007, 106(1―3): 262―273

doi: 10.1016/j.jqsrt.2007.01.020
120 Mackowski D W. A simplified model to predict the effects of aggregation on the absorption properties of soot particles. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2006, 100(1-3): 237-249
Mackowski D W. A simplified model to predict the effects of aggregation on the absorptionproperties of soot particles. Journal ofQuantitative Spectroscopy & Radiative Transfer, 2006, 100(1-3): 237―249
121 Eymet V, Brasil A M, Ha M E. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 2002, 74(6): 697-718
doi: 10.1016/S0022-4073(01)00280-1
Eymet V, Brasil A M, Ha M E. Numerical investigation ofthe effect of soot aggregation on the radiative properties in theinfrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 74(6): 697―718

doi: 10.1016/S0022-4073(01)00280-1
122 Yon J, Claude R, Thierry G. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Particle &amp; Particle Systems Characterization , 2008, 25(1): 54-67
doi: 10.1002/ppsc.200700011
Yon J, Claude R, Thierry G. Extension of RDG-FA for scatteringprediction of aggregates of soot taking into account interactionsof large monomers. Particle & ParticleSystems Characterization, 2008, 25(1): 54―67

doi: 10.1002/ppsc.200700011
123 Farias T L, Koylu U O, Carvalho M G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics , 1996, 35(33): 6560-6567
doi: 10.1364/AO.35.006560
Farias T L, Koylu U O, Carvalho M G. Range of validity of theRayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics, 1996, 35(33): 6560―6567

doi: 10.1364/AO.35.006560
124 Mackowski D W. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Applied Optics , 1995, 34(18): 3535
doi: 10.1364/AO.34.003535
Mackowski D W. Electrostatics analysis ofradiative absorption by sphere clusters in the Rayleigh limit: applicationto soot particles. Applied Optics, 1995, 34(18): 3535

doi: 10.1364/AO.34.003535
125 Lee S C, Tien C L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy &amp; Radiative Transfer , 1983, 29(3): 259-265
doi: 10.1016/0022-4073(83)90043-2
Lee S C, Tien C L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1983, 29(3): 259―265

doi: 10.1016/0022-4073(83)90043-2
126 Nilsson T, Sunden B. Thermal radiative coefficients of cylindrically and spherically shaped soot particles and soot agglomerates. Heat and Mass Transfer , 2004, 41(1): 12-22
doi: 10.1007/s00231-004-0519-3
Nilsson T, Sunden B. Thermalradiative coefficients of cylindrically and spherically shaped sootparticles and soot agglomerates. Heat andMass Transfer, 2004, 41(1): 12―22

doi: 10.1007/s00231-004-0519-3
127 Hermann G, Iden R, Mielke M, . On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids , 1995, 186: 380-387
doi: 10.1016/0022-3093(95)90076-4
Hermann G, Iden R, Mielke M, et al. On the way to commercialproduction of silica aerogel. Journal ofNon-Crystalline Solids, 1995, 186: 380―387

doi: 10.1016/0022-3093(95)90076-4
128 Zhou B, Shen J, Wu Y H, . Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C , 2007, 27(5–8): 1291-1294
doi: 10.1016/j.msec.2006.06.032
Zhou B, Shen J, Wu Y H, et al. Hydrophobic silicaaerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C, 2007, 27(5–8): 1291―1294

doi: 10.1016/j.msec.2006.06.032
129 Shen J, Zhang Z H, Wu G M, . Preparation and characterization of silica aerogels derived from ambient pressure Journal of Materials Science and Technology , 2006, 22(6): 798-802
Shen J, Zhang Z H, Wu G M, et al. Preparation and characterization of silica aerogelsderived from ambient pressure Journal ofMaterials Science and Technology, 2006, 22(6): 798―802
130 Reim M, Beck A, Korner W, . Highly insulating aerogel glazing for solar energy usage. Solar Energy , 2002, 72(1): 21-29
doi: 10.1016/S0038-092X(01)00086-X
Reim M, Beck A, Korner W, et al. Highly insulatingaerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21―29

doi: 10.1016/S0038-092X(01)00086-X
131 Wang P, Korner W, Emmerling A, . Optical investigations of silica aerogels. Journal of Non-Crystalline Solids , 1992, 145(1-3): 141-145
doi: 10.1016/S0022-3093(05)80444-2
Wang P, Korner W, Emmerling A, et al. Optical investigationsof silica aerogels. Journal of Non-CrystallineSolids, 1992, 145(1―3): 141―145

doi: 10.1016/S0022-3093(05)80444-2
132 Beck A, Korner W, Fricke J. Optical investigations of granular aerogel fills. Journal of Physics D: Applied Physics , 1994, 27(1): 13-18
doi: 10.1088/0022-3727/27/1/002
Beck A, Korner W, Fricke J. Optical investigations ofgranular aerogel fills. Journal of PhysicsD: Applied Physics, 1994, 27(1): 13―18

doi: 10.1088/0022-3727/27/1/002
133 Zhu Qunzhi, Duan Rui, Li Yongguang. Measurements of solar optical properties of transparent insulation materials. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada , 2007, 919-924
Zhu Qunzhi, Duan Rui, Li Yongguang. Measurements of solar optical properties of transparentinsulation materials. Proceedings of theASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver,Canada, 2007, 919―924
134 Wang P, Beck A, Korner W, . Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatmen. Journal of Physics D: Applied Physics , 1994, 27(2): 414-418
doi: 10.1088/0022-3727/27/2/036
Wang P, Beck A, Korner W, et al. Density and refractiveindex of silica aerogels after low- and high-temperature supercriticaldrying and thermal treatmen. Journal ofPhysics D: Applied Physics, 1994, 27(2): 414―418

doi: 10.1088/0022-3727/27/2/036
135 Pajonk G M. Some applications of silica aerogels. Colloid and Polymer Science , 2003, 281(7): 637-651
doi: 10.1007/s00396-002-0814-9
Pajonk G M. Some applications of silica aerogels. Colloid and Polymer Science, 2003, 281(7): 637―651

doi: 10.1007/s00396-002-0814-9
136 Ishimaru A. Diffusion of light in turbid material. Applied Optics , 1989, 28(12): 2210-2215
Ishimaru A. Diffusionof light in turbid material. Applied Optics, 1989, 28(12): 2210―2215
137 Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation I: Theory. Applied Optics , 1997, 36(19): 4587-4599
doi: 10.1364/AO.36.004587
Contini D, Martelli F, Zaccanti G. Photon migration througha turbid slab described by a model based on diffusion approximationI: Theory. Applied Optics, 1997, 36(19): 4587―4599

doi: 10.1364/AO.36.004587
138 Chen B, Stamnes K, Stamnes J J. Validity of the diffusion approximation in bio-optical imaging. Applied Optics , 2001, 40(34): 6356-6366
doi: 10.1364/AO.40.006356
Chen B, Stamnes K, Stamnes J J. Validity of the diffusionapproximation in bio-optical imaging. AppliedOptics, 2001, 40(34): 6356―6366

doi: 10.1364/AO.40.006356
139 Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics , 1993, 32(4): 559-568
Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid media byusing the adding-doubling method. AppliedOptics, 1993, 32(4): 559―568
140 Marchesini R, Bertoni A, Andreola S, . Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Applied Optics , 1989, 28(12): 2318-2324
Marchesini R, Bertoni A, Andreola S, et al. Extinction and absorption coefficients and scatteringphase functions of human tissues in vitro. Applied Optics, 1989, 28(12): 2318―2324
141 Pickering J W, Prahl S A, van Wieringen N, . Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics , 1993, 32(4): 399-410
Pickering J W, Prahl S A, van Wieringen N, et al. Double-integrating-sphere systemfor measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399―410
142 Zhu D, Lu W, Zeng S, . Effect of light losses of sample between two integrating spheres on optical properties estimation. Journal for Biomedical Optics , 2007, 12(6): 064004
doi: 10.1117/1.2815691
Zhu D, Lu W, Zeng S, et al. Effect of lightlosses of sample between two integrating spheres on optical propertiesestimation. Journal for Biomedical Optics, 2007, 12(6): 064004

doi: 10.1117/1.2815691
143 Sardar D K, Mayo M. L, Glickman R D. Optical characterization of melanin. Journal for Biomedical Optics , 2001, 6(4): 404-411
doi: 10.1117/1.1411978
Sardar D K, Mayo M. L, Glickman R D. Optical characterizationof melanin. Journal for Biomedical Optics, 2001, 6(4): 404―411

doi: 10.1117/1.1411978
144 Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics , 1990, 26(12): 2166-2185
doi: 10.1109/3.64354
Cheong W F, Prahl S A, Welch A J. A review of the optical propertiesof biological tissues. IEEE Journal ofQuantum Electronics, 1990, 26(12): 2166―2185

doi: 10.1109/3.64354
145 Bashkatov A N, Genina E A, Kochubey V I, . Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics , 2005, 38: 2343-2355
doi: 10.1088/0022-3727/38/15/004
Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of human skin, subcutaneous and mucous tissuesin the wavelength range from 400 to 2000?nm. Journal of Physics D: Applied Physics, 2005, 38: 2343―2355

doi: 10.1088/0022-3727/38/15/004
146 Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Journal of Biomedical Optics , 2001, 6(2): 167-176
doi: 10.1117/1.1344191
Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelengthrange of 1000 to 2200?nm. Journalof Biomedical Optics, 2001, 6(2): 167―176

doi: 10.1117/1.1344191
147 Wang L, Jacques L S, Zheng L. MCML- Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods &amp; Programs in Biomedicine , 1995, 47(2): 131-146
doi: 10.1016/0169-2607(95)01640-F
Wang L, Jacques L S, Zheng L. MCML- Monte Carlo modelingof light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine, 1995, 47(2): 131―146

doi: 10.1016/0169-2607(95)01640-F
148 Liu Q, Ramanujam N. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied Optics , 2006, 45(19): 4776-4790
doi: 10.1364/AO.45.004776
Liu Q, Ramanujam N. Sequentialestimation of optical properties of a two-layered epithelial tissuemodel from depth-resolved ultraviolet-visible diffuse reflectancespectra. Applied Optics, 2006, 45(19): 4776―4790

doi: 10.1364/AO.45.004776
149 Weidner V R, Hsia J J, Adams B. Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Applied Optics , 1985, 24(14): 2225-2230
Weidner V R, Hsia J J, Adams B. Laboratory intercomparison study of pressed polytetrafluoroethylenepowder reflectance standards. Applied Optics, 1985, 24(14): 2225―2230
150 Bruegge C J, Stiegman A E, Rainen R A, . Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors. Optical Engineering , 1993, 32(4): 805-814
doi: 10.1117/12.132373
Bruegge C J, Stiegman A E, Rainen R A, et al. Use of Spectralonas a diffuse reflectance standard for in-flight calibration of earth-orbitingsensors. Optical Engineering, 1993, 32(4): 805―814

doi: 10.1117/12.132373
151 Courreges-Lacoste G B, Schaarsberg J, Sprik R, . Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering , 2003, 42(12): 3600-3607
doi: 10.1117/1.1622961
Courreges-Lacoste G B, Schaarsberg J, Sprik R, et al. Modelingof Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 2003, 42(12): 3600―3607

doi: 10.1117/1.1622961
152 McGuckin B T, Haner D A, Menzies R T. Multiangle imaging spectroradiometer: optical characterization of the calibration panels. Applied Optics , 1997, 36(27): 7016-7022
doi: 10.1364/AO.36.007016
McGuckin B T, Haner D A, Menzies R T. Multiangle imaging spectroradiometer: optical characterization ofthe calibration panels. Applied Optics, 1997, 36(27): 7016―7022

doi: 10.1364/AO.36.007016
153 Stiegman A E, Bruegge C J, Springsteen A W. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Optical Engineering , 1993, 32(4): 799-804
doi: 10.1117/12.132374
Stiegman A E, Bruegge C J, Springsteen A W. Ultraviolet stability and contamination analysis of Spectralon diffusereflectance material. Optical Engineering, 1993, 32(4): 799―804

doi: 10.1117/12.132374
154 Fairchild M D, Daoust D J O. Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Applied Optics , 1988, 27(16): 3392-3396
Fairchild M D, Daoust D J O. Goniospectrophotometric analysisof pressed PTFE powder for use as a primary transfer standard. Applied Optics, 1988, 27(16): 3392―3396
155 Kim C S, Kong H J. Rapid absolute diffuse spectral reflectance factor measurements using a silicon-photodiode array. Color Research and Application , 1997, 22(4): 275-279
doi: 10.1002/(SICI)1520-6378(199708)22:4&lt;275::AID-COL8&gt;3.0.CO;2-M
Kim C S, Kong H J. Rapid absolute diffuse spectral reflectancefactor measurements using a silicon-photodiode array. Color Research and Application, 1997, 22(4): 275―279

doi: 10.1002/(SICI)1520-6378(199708)22:4<275::AID-COL8>3.0.CO;2-M
156 Sadhwani A, Schomacker K T, Tearney G J, . Determination of Teflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics , 1996, 35(28): 5727-5735
doi: 10.1364/AO.35.005727
Sadhwani A, Schomacker K T, Tearney G J, et al. Determination ofTeflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics, 1996, 35(28): 5727―5735

doi: 10.1364/AO.35.005727
157 Early E A, Barnes P Y, Johnson B C, . Bidirectional reflectance round-robin in support of the earth observing system program. Journal of Atmospheric and Oceanic Technology , 1999, 17: 1077-1091
doi: 10.1175/1520-0426(2000)017&lt;1077:BRRRIS&gt;2.0.CO;2
Early E A, Barnes P Y, Johnson B C, et al. Bidirectional reflectance round-robin in support of the earth observingsystem program. Journal of Atmosphericand Oceanic Technology, 1999, 17: 1077―1091

doi: 10.1175/1520-0426(2000)017<1077:BRRRIS>2.0.CO;2
158 Huber N, Heitz J, Bauerle D. Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics , 2004, 25(1): 33-38
doi: 10.1051/epjap:2003083
Huber N, Heitz J, Bauerle D. Pulsed-laser ablation ofpolytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics, 2004, 25(1): 33―38

doi: 10.1051/epjap:2003083
159 Li Q, Lee B J, Zhang Z M, . Light scattering of semitransparent sintered polytetrafluoroethylene films. Journal of Biomedical Optics , 2008, 13(5): 054064-1 /12
Li Q, Lee B J, Zhang Z M, et al. Light scattering of semitransparent sinteredpolytetrafluoroethylene films. Journalof Biomedical Optics, 2008, 13(5): 054064―1/12
160 Caron J, Andraud C, Lafait J. Radiative transfer calculations in multilayer systems with smooth and rough interfaces. Journal of Modern Optics , 2004, 51(4): 575-595
doi: 10.1080/09500340408238069
Caron J, Andraud C, Lafait J. Radiative transfer calculationsin multilayer systems with smooth and rough interfaces. Journal of Modern Optics, 2004, 51(4): 575―595

doi: 10.1080/09500340408238069
161 Pak K, Tsang L, Li L, . Combined random rough surface and volume scattering based on Monte Carlo simulations of solutions of Maxwell’s equations. Radio Science , 1993, 28(3): 331-338
doi: 10.1029/93RS00275
Pak K, Tsang L, Li L, et al. Combined randomrough surface and volume scattering based on Monte Carlo simulationsof solutions of Maxwell’s equations. Radio Science, 1993, 28(3): 331―338

doi: 10.1029/93RS00275
162 Sentenac A, Giovannini H, Saillard M. Scattering from rough inhomogeneous media: splitting of surface and volume scattering. Journal of the Optical Society of America A , 2002, 19(4): 727-736
doi: 10.1364/JOSAA.19.000727
Sentenac A, Giovannini H, Saillard M. Scattering from rough inhomogeneousmedia: splitting of surface and volume scattering. Journal of the Optical Society of America A, 2002, 19(4): 727―736

doi: 10.1364/JOSAA.19.000727
[1] Wang LIU, Jiaqi ZHAI, Baiyang LIN, He LIN, Dong HAN. Soot size distribution in lightly sooting premixed flames of benzene and toluene[J]. Front. Energy, 2020, 14(1): 18-26.
[2] Lijun WU, Yu ZHANG, Bingjiang LI, Pengxiang WANG, Lishuang FAN, Naiqing ZHANG, Kening SUN. Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries[J]. Front. Energy, 2019, 13(3): 597-602.
[3] Weiliang WANG, Bo LI, Xuan YAO, Junfu LYU, Weidou NI. Air pollutant control and strategy in coal-fired power industry for promotion of China’s emission reduction[J]. Front. Energy, 2019, 13(2): 307-316.
[4] Huaqiang CHU, Qiang CHENG, Huaichun ZHOU, Fengshan LIU. Nongray radiation from gas and soot mixtures in planar plates based on statistical narrow-band spectral model[J]. Front Energ Power Eng Chin, 2011, 5(2): 149-158.
[5] Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU, . Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer in diesel engine[J]. Front. Energy, 2010, 4(3): 392-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed