|
|
|
Development of MCBurn and its application in
the analysis of SCWR physical characteristics |
| Ganglin YU , Kan WANG , |
| Department of Engineering
Physics, Tsinghua University, Beijing 100084, China; |
|
|
|
|
Abstract The MCBurn, a coupled code system linking the Monte Carlo N-particle transport code(MCNP) and Oak Ridge isotope generation and depletion code (ORIGEN), can resolve the basic calculation problems in reactor physical design and analysis, such as criticality, power distribution, nuclide burn up, and neutron fluence. It has been verified in the pressurized water reactor (PWR) pin model, fast reactor (FR) burn up model, and boiling water reactor(BWR) assemble model with benchmarked results. In supercritical water reactor (SCWR) physical calculations, the calculation conditions such as the geometry, the neutron spectrum, and the fuel materials, etc., are more complex than those in traditional reactors, which is a great challenge to reactor physics calculation code. However, the MCBurn code is a possible solution. In this paper, several update functions of the MCBurn in new neutron cross-section lib, code interface, and neutron flux distribution were described. The application of the MCBurn in SCWR were verified on a supercritical water reactor assemble. The calculation results show that the MCBurn is accurate and adaptable in the SCWR calculation.
|
| Keywords
Monte Carlo method
MCBurn
SCWR
neutron cross-section lib
|
|
Issue Date: 05 September 2009
|
|
|
Briesmeister J F. MCNP―A General Monte Carlo N-Particle Transport Code. TechnicalReport LA-12625-M, Version 4B. Los AlamosNational Laboratory, 1997
|
|
Croff A G. A User’s Manual for ORIGEN2 Computer Code. Report ORNL/TM-7175. Oak Ridge National Laboratory, 1980
|
|
Trellue H R. Development of Monteburns: A Code That Links MCNP and ORIGEN2 inan Automated Fashion for Burnup Calculations. Technical Report LA-13514-T. Los Alamos National Laboratory, 1998
|
|
Moore R L, Schnitzler B G, Wemple C A, et al. MOCUP: MCNP-ORIGEN2 Coupled Utility Program.Report INEL-95/0523. Idaho National EngineeringLaboratory, 1995
|
|
Wang Kan, Lou T P, Greenspan E, et al. Benchmarking and validation of MOCUP. Proceedings of the 2000 ANS International TopicalMeeting on Advances in Reactor Physics and Mathematics and Computationinto the next Millennium, Pittsburgh, PA, 2000, 15202
|
|
DeHart M D, Brady M C, Parks C V. OECD/NEA burnup credit calculational criticality benchmarkphase I-B results. Repot NEA/NSC/DOC (96)-06(ORNL-6901). Oak Ridge National Laboratory, Oak Ridge TN, 1996
|
|
Nuclear Energy Agency / Working Party on Physicsof Plutonium Recycling, Organisation for Economic Co-operation andDevelopment. Fast Plutonium-Burner Reactors:Beginning of Life (A report by the Working Party on the Physics ofPlutonium Recycling of the NEA Nuclear Science Committee: Physicsof Plutonium Recycling, Volume 4). Paris: OECD, 1995
|
|
Hofmeister J, Waata C, Starflinger J. Fuel assembly design study for a reactor with supercriticalwater. Nuclear Engineering and Design, 2007, 237(14): 1513–1521
doi: 10.1016/j.nucengdes.2007.01.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|