Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (3) : 333-345    https://doi.org/10.1007/s11708-009-0061-6
Research articles
Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted vortex generators and their sensitivity to nonuniform temperature of the fin
Liangbi WANG,Zhimin LIN,Kangjie SUN,Yuanxin DONG,Song LIU,Yongheng ZHANG,
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
 Download: PDF(407 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.
Keywords heat transfer enhancement      vortex generator      finned flat tube bank      heat exchanger      
Issue Date: 05 September 2010
 Cite this article:   
Song LIU,Liangbi WANG,Kangjie SUN, et al. Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted vortex generators and their sensitivity to nonuniform temperature of the fin[J]. Front. Energy, 2010, 4(3): 333-345.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0061-6
https://academic.hep.com.cn/fie/EN/Y2010/V4/I3/333
Fiebig M. Embedded vortices in internal flow: heat transfer andpressure loss enhancement. InternationalJournal of Heat and Fluid Flow, 1995, 16(5): 376–388

doi: 10.1016/0142-727X(95)00043-P
Fiebig M. Vortices, generators and heat transfer. Chemical Engineering Research & Design, 1998, 76(2): 108–123

doi: 10.1205/026387698524686
Fiebig M. Vortex generators for compact heat exchangers. International Journal of Enhanced Heat Transfer, 1995, 2(1): 43–61
Jacobi A M, Shah R K. Heat transfersurface enhancement through the use of longitudinal vortices: A reviewof recent progress. Experimental Thermaland Fluid Science II, 1995, 11(3): 295–309

doi: 10.1016/0894-1777(95)00066-U
Gentry M C, Jacobi A M. Heat transferenhancement by delta-wing-generated tip vortices in flat-plate anddeveloping channel flows. ASME Journalof Heat Transfer, 2002, 124(6): 1158–1168

doi: 10.1115/1.1513578
Joardar A, Jacobi A M. Impact ofleading edge delta-wing vortex generators on the thermal performanceof a flat tube, louvered-fin compact heat exchanger. International Journal of Heat and Mass Transfer, 2005, 48(8): 1480–1493

doi: 10.1016/j.ijheatmasstransfer.2004.10.018
Joardar A, Jacobi A M. A numericalstudy of flow and heat transfer enhancement using an array of delta-wingletvortex generators in a fin-and-tube heat exchanger. Journal of Heat Transfer, 2007, 129(9): 1156–1167

doi: 10.1115/1.2740308
Wang Qiuwang, Chen Qiuyang, Wang Ling, Zeng Min, Huang Yanping, Xiao Zejun. Experimental study of heattransfer enhancement in rectangular narrow channel with longitudinalvortex generators. Nuclear Engineeringand Design, 2007, 237(7): 686–693

doi: 10.1016/j.nucengdes.2006.09.003
Wang Liangbi, Ke F, Gao Shengdong, Mei Yuanguai, . Local and average characteristics of heat /mass transferover flat tube bank fin with four vortex generators per tube. ASME Journal of Heat Transfer, 2002, 124(3): 546–552

doi: 10.1115/1.1423905
Wang Liangbi, Zhang Yongheng, Su Yinxin, Gao Shengdong. Local and average heat /mass transfer over flat tubebank fin mounted in-line vortex generators with small longitudinalspacing, J. Enhanced Heat Transfer, 2002, 9(2): 77–87

doi: 10.1080/10655130214156
Zhang Yongheng, Wang Liangbi, Su Yingxin, Gao Shengdong. Effects of the pitch of in line delta winglet vortexgenerators on heat transfer of a finned three-row flat tube bank. Experimental Heat Transfer2004, 17(1): 69–90
Zhang Yongheng, Wang Liangbi, Su Yingxin, Gao Shengdong. Effects of span position of winglet vortex generatoron local heat/mass transfer over a three-row flat tube bank fin. Heat Mass Transfer, 2004, 40(11): 881–891

doi: 10.1007/s00231-003-0498-9
Gao S. D., Wang Liangbi, Zhang Yongheng, Ke Feng. The optimum height of winglet vortex generators mountedon three-row flat tube bank fin. ASME Journalof Heat Transfer, 2003, 125(6): 1007–1016

doi: 10.1115/1.1621900
Shi Baizhan, Wang Liangbi, Gen Feng, Zhang Yongheng. The optimal fin spacing for three-row flat tube bankfin mounted with vortex generators. HeatMass Transfer, 2006, 43(1): 91–101

doi: 10.1007/s00231-006-0093-y
Liou T M, Chen C C, Tsai T W. Heat transfer and fluid flow in a squareduct with 12 different shaped vortex generators. ASME Journal of Heat Transfer, 2000, 122(2): 327–335

doi: 10.1115/1.521487
Acharya S, Hibbs R G, Chen Y, Nikitopoulos D E. Mass/heat transfer in a ribbed passage with cylindrical vortex generators:The effect of generator-rib spacing. ASMEJournal of Heat Transfer, 2002, 122(4): 641–652

doi: 10.1115/1.1288026
Gentry M C, Jacobi A M. Heat transferenhancement by delta-wing-generated tip vortices in flat-plate anddeveloping channel flows. ASME Journalof Heat Transfer, 2002, 122(6): 1158–1168

doi: 10.1115/1.1513578
Dupont F, Gabillet C, Bot P. Experimental study of theflow in a compact heat exchanger channel with embossed-type vortexgenerators. ASME Journal of Heat Transfer, 2003, 125(4): 701–709
Smotrys M L, Ge H, Jacobi A M, Dutton J C. Flow and heat transfer behavior for a vortex-enhanced interruptedfin. ASME Journal of Heat Transfer, 2003, 125(5): 788–794

doi: 10.1115/1.1597616
O’Brien J E, Sohal M S, Wallstedt P C. Local heat transfer and pressuredrop for finned-tube heat exchangers using oval tubes and vortex generators. ASME Journal of Heat Transfer, 2004, 126(5): 826–835

doi: 10.1115/1.1795239
Malapure V P, Sushanta K M, Bhattacharya A. Numerical investigation offluid flow and heat transfer over louvered fins in compact heat exchanger. International Journal of Thermal Sciences, 2007, 46(2): 199–211

doi: 10.1016/j.ijthermalsci.2006.04.010
Zhu Changlin, Liang Hua, Sun Dongliang, Wang Liangbi, Zhang Yongheng. Numericalstudy of interactions of vortices generated by vortex generators andtheir effects on heat transfer enhancement. Numerical Heat Transfer, 2006, 50(4): 353–368
Qi Zhaogang, Chen Jiangping, Chen Zhijiu. Parametric study on the performanceof a heat exchanger with corrugated louvered fins. Applied Thermal Engineering, 2007, 27(2-3): 539–544

doi: 10.1016/j.applthermaleng.2006.06.015
Liu Song, Wang Liangbi, Fan Jufang, Zhang Yongheng, Dong Yuanxin, Song Kewei. Tube transverse pitch effecton heat/mass transfer characteristics of flat tube bank fin mountedwith vortex generators. ASME Journal ofHeat Transfer, 2008, 130(6): 546–552
Goldstein R J. A review of mass transfer measurements using naphthalenesublimation. Experimental Thermal and FluidScience, 1995, 10(4): 416–434

doi: 10.1016/0894-1777(94)00071-F
Saboya F, Sparrow E M. Local and average transfer coefficients for one-row plate fin andtube heat exchanger configurations. ASMEJournal of Heat Transfer, 1974, 96(3): 265–272
Zhang Yongheng, Wu Xiang, Wang Liangbi, Song Kewei, Dong Yuanxin, Liu Song. Comparison of heat transferperformance of tube bank fin with mounted vortex generators to tubebank fin with punched vortex generators. Experimental Thermal and Fluid Science, 2008, 33(1): 58–66

doi: 10.1016/j.expthermflusci.2008.07.002
Chen Y, Fiebig M, Mitra N K. Conjugate heat transfer of a finned ovaltube with a punched longitudinal vortex generator in form of a deltawinglet- parametric investigations of the winglet. International Journal of Heat and Mass Transfer, 1998, 41(23): 3961–3978

doi: 10.1016/S0017-9310(98)00076-3
Webb R L. Principles of Enhanced Heat Transfer. New York: Wiley Press, 1994
[1] Jitan WU, Yonglin JU. Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers[J]. Front. Energy, 2020, 14(4): 683-698.
[2] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[3] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[4] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[5] Haiyan LI, Jing LIU. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers[J]. Front Energ, 2011, 5(1): 20-42.
[6] Ping ZHANG, Guoliang DING. Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat exchangers[J]. Front Energ Power Eng Chin, 2010, 4(4): 535-541.
[7] Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI, . Augmentation of natural convective heat transfer by acoustic cavitation[J]. Front. Energy, 2010, 4(3): 313-318.
[8] Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG, . Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage[J]. Front. Energy, 2010, 4(2): 171-180.
[9] Nairen DIAO, Ping CUI, Junhong LIU, Zhaohong FANG, . R&D of the ground-coupled heat pump technology in China[J]. Front. Energy, 2010, 4(1): 47-54.
[10] Mingtian XU, Jiangfeng GUO, Lin CHENG, . Application of entransy dissipation theory in heat convection[J]. Front. Energy, 2009, 3(4): 402-405.
[11] REN Hesheng, LAI Lingjun, CUI Yongzheng. Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces[J]. Front. Energy, 2008, 2(4): 374-380.
[12] DONG Junqi, CHEN Jiangping, CHEN Zhijiu. Flow and heat transfer in compact offset strip fin surfaces[J]. Front. Energy, 2008, 2(3): 291-297.
[13] DONG Junqi, CHEN Jiangping, CHEN Zhijiu. Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger[J]. Front. Energy, 2008, 2(1): 99-106.
[14] TAO Wenquan, WU Junmei. Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based on field synergy principle[J]. Front. Energy, 2008, 2(1): 71-78.
[15] MA Kunquan, LIU Jing. Liquid metal cooling in thermal management of computer chips[J]. Front. Energy, 2007, 1(4): 384-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed