Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (2) : 280-286    https://doi.org/10.1007/s11708-009-0062-5
Research articles
On the applicability of different adhesion models in adhesive particulate flows
Guanqing LIU,Shuiqing LI,Qiang YAO,
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China;
 Download: PDF(233 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An adhesion map provides quantitative criteria for the appropriate selection of adhesion models applicable to a specific adhesive contact problem of fine particles in complex particulate flows. In this paper, three different general adhesion models are used to construct adhesion maps. The applicable regimes on the adhesion map for different approximate adhesion models are determined according to their underlying limitations. It is found that the choice of general model has limited influence on the structure of a constructed adhesion map. On the contrary, the regime of application for each approximate model is sensitive to the approximation level. A three-dimensional, more intuitive adhesion map based on physical parameters of particles is also built. Finally, recent applications of adhesion models in discrete element method (DEM) investigations of fine-particle flow dynamics are briefly discussed.
Keywords adhesive contact      van der Waals force      adhesion model      adhesion map      DEM      
Issue Date: 05 June 2010
 Cite this article:   
Guanqing LIU,Shuiqing LI,Qiang YAO. On the applicability of different adhesion models in adhesive particulate flows[J]. Front. Energy, 2010, 4(2): 280-286.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0062-5
https://academic.hep.com.cn/fie/EN/Y2010/V4/I2/280
Maugis D. Contact, Adhesion and Rupture of Elastic Solids. New York: Springer, 2000, 14―16
Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformationson the adhesion of particles. Journal ofColloid and Interface Science, 1975, 53(2): 314―326

doi: 10.1016/0021-9797(75)90018-1
Johnson K L, Kendall K, Roberts A D. Surface energy and the contactof elastic solids. Proceedings of the RoyalSociety of London A, 1971, 324: 301―313

doi: 10.1098/rspa.1971.0141
Johnson K L, Greenwood J A. An adhesion map for the contact of elastic spheres. Journal of Colloid and Interface Science, 1997, 192(2): 326―333

doi: 10.1006/jcis.1997.4984
Yao H, Ciavarella M, Gao H. Adhesion maps of spherescorrected for strength limit. Journal ofColloid and Interface Science, 2007, 315(2): 786―790

doi: 10.1016/j.jcis.2007.07.021
Zheng Zhijun, Yu Jilin. Using theDugdale approximation to match a specific interaction in the adhesivecontact of elastic objects. Journal ofColloid and Interface Science, 2007, 310(1): 27―34

doi: 10.1016/j.jcis.2007.01.042
Tabor D. Surface forces and surface interactions. Journal of Colloid Interface Science, 1977, 58(1): 2―13

doi: 10.1016/0021-9797(77)90366-6
Muller V M, Yushchenko V S, Derjaguin B V. On the influence of molecularforces on the deformation of elastic spheres and its sticking to arigid plane. Journal of Colloid and InterfaceScience, 1980, 77(1): 91―101

doi: 10.1016/0021-9797(80)90419-1
Maugis D. Adhesion of spheres: the JKR-DMT transition using a Dugdalemodel. Journal of Colloid and InterfaceScience, 1992, 50(1): 243―269

doi: 10.1016/0021-9797(92)90285-T
Barthel E. On the description of the adhesive contact of sphereswith arbitrary interaction potentials. Journal of Colloid and Interface Science, 1998, 200(1): 7―18

doi: 10.1006/jcis.1997.5309
Konstandopoulos A G. Deposit growth dynamics: particle stickingand scattering phenomena. Powder Technology, 2000, 109(1): 262―277

doi: 10.1016/S0032-5910(99)00242-9
Dong K J, Yang R Y, Zou R P, Yu A B. Role of interparticle forces in the formation of random loose packing. Physical Review Letters, 2006, 96(14): 1455051―1455054

doi: 10.1103/PhysRevLett.96.145505
Severens I E M, van de Ven A A F, Wolf D E, Matthejj R M M. Discrete element method simulations of toner behaviorin the development nip of the Océ Direct Imaging print process. Granular Matter, 2006, 8(3,4): 137―150
Barthel E. Adhesive elastic contacts: JKR and more. Journal of Physics D: Applied Physics, 2008, 41(16): 1―20

doi: 10.1088/0022-3727/41/16/163001
Mishra B K, Thornton C, Bhimji D. A preliminary numerical investigationof agglomeration in a rotary drum. MineralsEngineering. Minerals Engineering, 2002, 15(1): 27―33

doi: 10.1016/S0892-6875(01)00194-7
Marshall J S. Particle aggregation and capture by walls in a particulateaerosol channel flow. Aerosol Science, 2007, 38(3): 333―351

doi: 10.1016/j.jaerosci.2007.01.004
Li S Q and Marshall J S. Discrete element simulation of micro-particle deposition on a cylindricalfiber in an array. Journal of Aerosol Science, 2007, 38(10): 1031―1046

doi: 10.1016/j.jaerosci.2007.08.004
Li S Q, Marshall J S, Ratner A, Yao Q. Molecular dynamics simulation of particle depositionand agglomeration in two-phase dilute flow. Journal of Engineering Thermophysics, 2007, 28(6): 1035―1038 (in Chinese)
[1] S. L. ARUN, M. P. SELVAN. Smart residential energy management system for demand response in buildings with energy storage devices[J]. Front. Energy, 2019, 13(4): 715-730.
[2] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[3] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[4] Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J]. Front. Energy, 2019, 13(1): 114-119.
[5] Seiya MAKI, Shuichi ASHINA, Minoru FUJII, Tsuyoshi FUJITA, Norio YABE, Kenji UCHIDA, Gito GINTING, Rizaldi BOER, Remi CHANDRAN. Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia[J]. Front. Energy, 2018, 12(3): 426-439.
[6] S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR. Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves[J]. Front. Energy, 2016, 10(4): 409-423.
[7] S. Hari Charan CHERUKURI,Balasubramaniyan SARAVANAN. An overview of selected topics in smart grids[J]. Front. Energy, 2016, 10(4): 441-458.
[8] Y. HASHEMI,H. SHAYEGHI,B. HASHEMI. Attuned design of demand response program and M-FACTS for relieving congestion in a restructured market environment[J]. Front. Energy, 2015, 9(3): 282-296.
[9] Balasubramaniyan SARAVANAN. DSM in an area consisting of residential, commercial and industrial load in smart grid[J]. Front. Energy, 2015, 9(2): 211-216.
[10] Cosimo MAGAZZINO. Electricity demand, GDP and employment: evidence from Italy[J]. Front Energ, 2014, 8(1): 31-40.
[11] Ashwani KUMAR, Charan SEKHAR. Demand response based congestion management in a mix of pool and bilateral electricity market model[J]. Front Energ, 2012, 6(2): 164-178.
[12] Molin HUO, Xiliang ZHANG, Jiankun HE. Causality relationship between the photovoltaic market and its manufacturing in China, Germany, the US, and Japan[J]. Front Energ, 2011, 5(1): 43-48.
[13] Jihong ZHANG, Jian ZHOU, Guangping HU, Tianhou ZHANG. Scenario analysis of the energy demand and CO2 emission reduction potential of the urban transport system of Beijing through 2030[J]. Front Energ Power Eng Chin, 2010, 4(4): 459-468.
[14] WANG Fuchen, ZHOU Zhijie, DAI Zhenhua, GONG Xin, YU Guangsuo, LIU Haifeng, WANG Yifei, YU Zunhong. Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology[J]. Front. Energy, 2007, 1(3): 251-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed