Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (3) : 358-365    https://doi.org/10.1007/s11708-009-0071-4
Research articles
Heat transfer with water flowing upward in a tube for pressures up to supercritical region
Yuzhou CHEN,Chunsheng YANG,Shuming ZHANG,Minfu ZHAO,Kaiwen DU,
China Institute of Atomic Energy, Beijing 102413, China;
 Download: PDF(343 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A heat transfer experiment was conducted in a tube of 6.07mm in diameter with water flowing upward, covering the ranges of pressure of 10―23MPa, mass flux of 288―1298kg/(m2·s), local water temperature of 78°C―270°C, heat flux of 0.23―1.18MW/m2 and Reynolds number of 5.5×103―3.9×104. The experimental results were compared with the predictions of the Dittus-Boelter correlation, Jackson correlation, Bishop correlation, Swenson correlation and Yamagata correlation. Significant deterioration in heat transfer was observed in both subcritical and supercritical region due to the effect of buoyancy force, but it was not predicted reasonably by the existing correlations.
Keywords heat transfer      deterioration      buoyancy      supercritical water      
Issue Date: 05 September 2010
 Cite this article:   
Kaiwen DU,Yuzhou CHEN,Shuming ZHANG, et al. Heat transfer with water flowing upward in a tube for pressures up to supercritical region[J]. Front. Energy, 2010, 4(3): 358-365.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0071-4
https://academic.hep.com.cn/fie/EN/Y2010/V4/I3/358
Pioro I L, Khartabil H F, Duffey R B. Heat transfer to supercriticalfluids flowing in channels-empirical correlations. Nuclear Engineering and Design, 2004, 230(1―3): 69―91

doi: 10.1016/j.nucengdes.2003.10.010
Pioro I L, Duffey R B. Experimental heat transfer in supercritical water flowing insidechannels (survey). Nuclear Engineeringand Design, 2005, 235(22): 2407―2430

doi: 10.1016/j.nucengdes.2005.05.034
Cheng X, Schulenberg T. Heattransfer at supercritical pressures-literature review and applicationto an HPLWR. Scientific Report FZKA 6609. 2001
Jackson J D. Supercritical heat transfer. In: Hewitt G F, Shires G L, Polezhaev Y Veds. International Encyclopaedia of Heat and Mass Transfer. Florida: CRC Press, 1997, 1112―1117
Polyakov A F. Heat transfer under supercritical pressures. In: Advanced Heat Transfer, Vol.21. New York: Academic Press, Inc, 1991
Tanaka H, Maruyama S, Hatano S. Combined forced and naturalconvection heat transfer for upward flow in a uniformly heated verticalpipe. International Journal of Heat andMass Transfer, 1987, 30(1): 165―174

doi: 10.1016/0017-9310(87)90069-X
Celata G P., D’Annibale F, Chiaradia A, Cumo M, Heat transfer in upward mixed convective flow of waterin a vertical channel, Proceedings of 11th IHTC, Vol. 3, 287―292, Korea, 1998
Jackson J D, Cotton M A, Axcell B P. Studies of mixed convectionin vertical tubes. Int. J. Heat Fluid Flow, 1989, 10(1): 2―15

doi: 10.1016/0142-727X(89)90049-0
Chen Yuzhou, Mao Yulong, Yang Chunsheng. Heat transfer in mixed convectionof superheated steam flowing upward in tubes. In: Lee Child ed. Proceedings of 13th International Heat Transfer Conference. Sydney, Australia, MCV-11, 2006
Jackson J D. Consideration of the heat transfer properties of supercriticalpressure water in convection with the cooling of advanced nuclearreactors. In: Proceedings of the 13th PacificBasin Nuclear Conference, Shenzhen, China, 2002
Bishop A, Sandberg R, Tong L. Forced convection heat transferto water at near-critical temperatures and supercritical pressures. WCAP-2056, 1964
Yamagata K, Nishigawa K, Hasegawa S, Fuju T, Yoshida S. Forcedconvective heat transfer to supercritical water flowing in tubes. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575―2593

doi: 10.1016/0017-9310(72)90148-2
Swenson H S, Carver J H, Kakarala C R. Heat transfer to supercriticalwater in smooth bore tubes. Journal ofHeat Transfer, 1965, 87(4): 477―484
Grabezhnnaya V A, Kirillov P L. Heat transfer under supercritical pressures and heat transfer deteriorationboundaries. Thermal Engineering, 2006, 53(4): 296―301

doi: 10.1134/S0040601506040069
[1] Yanxing ZHAO, Maoqiong GONG, Haocheng WANG, Hao GUO, Xueqiang DONG. Development of mobile miniature natural gas liquefiers[J]. Front. Energy, 2020, 14(4): 667-682.
[2] Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Front. Energy, 2020, 14(3): 452-462.
[3] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[4] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[5] Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review[J]. Front. Energy, 2019, 13(1): 172-184.
[6] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[7] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[8] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[9] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[10] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[11] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[12] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
[13] Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Front Energ, 2012, 6(1): 1-11.
[14] Jinying YIN, Linhua LIU. Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space power systems[J]. Front Energ Power Eng Chin, 2011, 5(2): 166-173.
[15] C Y ZHAO, D ZHOU, Z G WU. Heat transfer of phase change materials (PCMs) in porous materials[J]. Front Energ, 2011, 5(2): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed