Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (3) : 301-305    https://doi.org/10.1007/s11708-010-0006-0
Research articles
Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer between parallel plates
Zeshao CHEN,Songping MO,Peng HU,Shouli JIANG,Gang WANG,Xiaofang CHENG,
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China;
 Download: PDF(144 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking nonequilibrium radiative heat transfer between two surfaces as an example, the nonequilibrium thermodynamics of radiation is studied and discussed. The formulas of entropy flow, entropy generation, exergy flux, and optimal temperature of absorbing surface for maximum exergy output are derived. The result is a contribution to the thermodynamic analysis and optimization of solar energy utilization and can be applied in more complex radiative heat transfer cases.
Keywords radiative heat transfer      entropy generation      exergy      thermodynamics      
Issue Date: 05 September 2010
 Cite this article:   
Zeshao CHEN,Peng HU,Gang WANG, et al. Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer between parallel plates[J]. Front. Energy, 2010, 4(3): 301-305.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0006-0
https://academic.hep.com.cn/fie/EN/Y2010/V4/I3/301
Petela R. Exergy of undiluted thermal radiation. Solar Energy, 2003, 74(6): 469–488

doi: 10.1016/S0038-092X(03)00226-3
Petela R. Exergy of heat radiation. Journal of Heat Transfer, 1964, 2: 187–192
Petela R. Exergy of radiation of a perfect gray body. Zesz Nauk Politechniki Slaskiej, 1961, 5: 33–45 (in Polish)
Spanner D C. Introduction to Thernodynamics. London: Academic Press, 1964
Jeter S M. Maximum conversion efficiency for the utilization ofdirect solar radiation. Solar Energy, 1981, 26(3): 231–236

doi: 10.1016/0038-092X(81)90207-3
Zhang Z M, Basu S. Entropy flowand generation in radiative transfer between surfaces. International Journal of Heat and Mass Transfer, 2007, 50(3,4): 702–712
Yang S M, Tao W Q. Heat Transfer. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese)
Chen Z S, Mo S P, Hu P. Recent progress in thermodynamics ofradiation-exergy of radiation, effective temperature of photon andentropy constant of photon. Science inChina Series E: Technological Sciences, 2008, 51(8): 1096–1109

doi: 10.1007/s11431-008-0158-x
[1] S. Rupesh, C. Muraleedharan, P. Arun. Energy and exergy analysis of syngas production from different biomasses through air-steam gasification[J]. Front. Energy, 2020, 14(3): 607-619.
[2] Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU. Room temperature liquid metal: its melting point, dominating mechanism and applications[J]. Front. Energy, 2020, 14(1): 81-104.
[3] Zhixiang WU, Lingen CHEN, Yanlin GE, Fengrui SUN. Optimization of the power, efficiency and ecological function for an air-standard irreversible Dual-Miller cycle[J]. Front. Energy, 2019, 13(3): 579-589.
[4] Mohammad H. AHMADI, Mohammad-Ali AHMADI, Esmaeil ABOUKAZEMPOUR, Lavinia GROSU, Fathollah POURFAYAZ, Mokhtar BIDI. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance[J]. Front. Energy, 2019, 13(2): 399-410.
[5] Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU. Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat[J]. Front. Energy, 2017, 11(4): 516-526.
[6] Min XU, Jun CAI, Xiulan HUAI. Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump[J]. Front. Energy, 2017, 11(4): 510-515.
[7] Bin HU, Di WU, L.W. WANG, R.Z. WANG. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Front. Energy, 2017, 11(4): 493-502.
[8] Nikhil DEV,Rajesh ATTRI. Performance analysis of combined cycle power plant[J]. Front. Energy, 2015, 9(4): 371-386.
[9] S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ. Exergy-energy analysis of full repowering of a steam power plant[J]. Front. Energy, 2015, 9(1): 54-67.
[10] Fidelis I. ABAM,Olayinka S. OHUNAKIN,Bethrand N. NWANKWOJIKE,Ekwe B. EKWE. End-use energy utilization efficiency of Nigerian residential sector[J]. Front. Energy, 2014, 8(3): 322-334.
[11] Lei WANG, Jing LIU. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials[J]. Front Energ, 2013, 7(3): 317-332.
[12] Lin ZUO, Lixia SUN, Changfu YOU. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir[J]. Front Energ Power Eng Chin, 2009, 3(2): 152-159.
[13] YANG Yang, LIU Jing. Nano thermo-hydrodynamics method for investigating cell membrane fluidity[J]. Front. Energy, 2008, 2(2): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed