Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (2) : 131-142    https://doi.org/10.1007/s11708-010-0035-8
Research articles
Energy systems engineering: methodologies and applications
Pei LIU1,Efstratios N. PISTIKOPOULOS1,Zheng LI2, 3,
1.Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; 2.State Key Laboratory of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China; 3.2010-07-06 15:13:10;
 Download: PDF(400 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Energy systems are the major contributor to ever-increasing primary energy consumption and consequent greenhouse gas emissions. To tackle these critical problems, planning and design of energy systems needs to be improved towards a more efficient, cost-effective, and environmentally benign direction. However, although there are many technical choices available, they are often developed separately by their own technical communities and driven by their specific interest, thus methods and experience obtained in planning and design of a certain type of energy systems are usually not applicable to other types of energy systems. Energy systems engineering provides a generic methodological framework to facilitate the planning and design of energy systems and to produce integrated solutions to real-life complex energy problems via a systematic approach.
In this paper, we present an overview of key methodologies of energy systems engineering, covering superstructure based modelling, mixed-integer programming, multi-objective optimization, optimization under uncertainty, and life-cycle assessment. Applications of these methodologies in polygeneration energy systems design, hydrogen infrastructure planning, and design of energy systems in commercial buildings are provided to demonstrate the capability of these methodologies.
Keywords energy systems engineering      superstructure      mixed-integer programming      multi-objective optimization      optimization under uncertainty      life-cycle assessment      
Issue Date: 05 June 2010
 Cite this article:   
Pei LIU,Efstratios N. PISTIKOPOULOS,Zheng LI, et al. Energy systems engineering: methodologies and applications[J]. Front. Energy, 2010, 4(2): 131-142.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0035-8
https://academic.hep.com.cn/fie/EN/Y2010/V4/I2/131
Pistikopoulos E N. Energy systems engineering―anintegrated approach for the energy systems of the future. In: European Congress of Chemical Engineering-6,Copenhagen, Denmark, 2007
Georgiadis M C, Kikkinides E S, Pistikopoulos E N. Process Systems Engineering. Vol. 5EnergySystems Engineering. Weinheim: Wiley-VCH, 2008
Georgiadis M C, Pistikopoulos E N. Integrated optimization of oil and gas production. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N. eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Liu P, Pistikopoulos E N, Li Z. An energy systems engineeringapproach to polygeneration and hydrogen infrastructure systems analysis& design. In: PRES 09 (12th InternationalConference on Process Integration, Modelling and Optimisation forEnergy Saving and Pollution Reduction). Rome, Italy, 2009
Yeomans H, Grossmann I E. A systematic modeling framework of superstructure optimization inprocess synthesis. Computers & ChemicalEngineering, 1999, 23(6): 709―731

doi: 10.1016/S0098-1354(99)00003-4
Yee T F, Grossmann I E, Kravanja Z. Simultaneous-optimizationmodels for heat integration. 3. process and heat-exchanger networkoptimization. Computers & ChemicalEngineering, 1990, 14(11): 1185―1200

doi: 10.1016/0098-1354(90)80001-R
Grossmann I E, Westerberg A W. Research challenges in process systems engineering. AIChE Journal, 2000, 46(9): 1700―1703

doi: 10.1002/aic.690460902
Kokossis A C, Floudas C. A. Synthesis of isothermal reactor separator recycle systems. Chemical Engineering Science1991, 46(5,6): 1361―1683
Agrawal R. Synthesis of distillation column configurations for amulticomponent separation. Industrial &Engineering Chemistry Research, 1996, 35 (4): 1059―1071

doi: 10.1021/ie950323h
Ismail S R, Proios P, Pistikopoulos E N. Modular synthesis frameworkfor combined separation/reaction systems. AIChE Journal, 2001, 47(3): 629―649

doi: 10.1002/aic.690470312
Hatzimanikatis V, Floudas C A, Bailey J E. Analysis and design of metabolicreaction networks via mixed-integer linear optimization. AIChE Journal1996, 42(5): 1277―1292

doi: 10.1002/aic.690420509
Schweiger C A, Floudas C A. Optimization framework for the synthesis of chemical reactor networks. Industrial & Engineering Chemistry Research, 1999, 38 (3), 744―766

doi: 10.1021/ie980460p
Tsai M J, Chang C T. Water usageand treatment network design using genetic algorithms. Industrial & Engineering Chemistry Research, 2001, 40(22): 4874―4888

doi: 10.1021/ie010011g
Hugo A, Rutter P, Pistikopoulos E N, Amorelli A, Zoia G. Hydrogen infrastructurestrategic planning using multi-objective optimization. International Journal of Hydrogen Energy, 2005, 30(15): 1523―1534

doi: 10.1016/j.ijhydene.2005.04.017
Liu P, Gerogiorgis D I, Pistikopoulos E N. Modeling and optimizationof polygeneration energy systems. CatalysisToday, 2007, 127(1―4): 347―359

doi: 10.1016/j.cattod.2007.05.024
Liu P, Pistikopoulos E N, Li Z. A mixed-integer optimizationapproach for polygeneration energy systems design. Computers & Chemical Engineering, 2009, 33(3): 759―768

doi: 10.1016/j.compchemeng.2008.08.005
Liu P, Pistikopoulos E N, Li Z. A multi-objective optimizationapproach to polygeneration energy systems design. AIChE Journal, 2009, 56(5): 1218―1234
Liu P, Pistikopoulos E N, Li Z. Decomposition based stochasticprogramming approach for polygeneration energy systems design underuncertainty. Industrial & EngineeringChemistry Research, 2010, 49(7): 3295―3305

doi: 10.1021/ie901490g
Floudas C A. Nonlinear and Mixed-Integer Optimization: Fundamentalsand Applications. USA: Oxford University Press, 1995
Land A H, Doig A G. An automaticmethod of solving discrete programming problems. Econometrica, 1960, 28(3): 497―520

doi: 10.2307/1910129
Geoffrion A M. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 1972, 10(4): 237

doi: 10.1007/BF00934810
Duran M A, Grossmann I E. An outer-approximation algorithm for a class of mixed-integer nonlinearprograms. Mathematical Programming, 1986, 36(3): 307―339

doi: 10.1007/BF02592064
www.gams.com/solvers/solvers.htmDICOPT
Adjiman C S, Dallwig S, Floudas C A, Neumaier A. A global optimization method, alpha BB, for general twice-differentiableconstrained NLPs―I. Theoretical advances. Computers & Chemical Engineering, 1998, 22(9): 1137―1158

doi: 10.1016/S0098-1354(98)00027-1
Sahinidis N, Tawarmalani M. 2009, BARON. URL www.gams.com/solvers/solvers.htm
Steuer R E. Multiple Criteria Optimization: Theory, Computation,and Application. New York City: John Wiley & Sons, 1986
Papalexandri K P, Dimkou T I. A parametric mixed-integer optimization algorithm for multiobjectiveengineering problems involving discrete decisions. Industrial & Engineering Chemistry Research, 1998, 37(5): 1866―1882

doi: 10.1021/ie970720n
Dua V, Pistikopoulos E N. Algorithms for the solution of multiparametric mixed-integer nonlinearoptimization problems. Industrial &Engineering Chemistry Research1999, 38 (10): 3976―3987

doi: 10.1021/ie980792u
Dua V, Pistikopoulos E N. An algorithm for the solution of multiparametric mixed integer linearprogramming problems. Annals of OperationsResearch, 2000, 99(1―4): 123―139

doi: 10.1023/A:1019241000636
Pistikopoulos E N. Uncertainty in process design and operations. Computers & Chemical Engineering, 1995, 19(Suppl.1): S553―S563

doi: 10.1016/0098-1354(95)00119-M
Beale E M L. On minizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society, SeriesB (Methodological), 1955, 17(2): 173―184
Dantzig G B. Linear programming under uncertainty. Management Science, 1955, 1(3―4): 197―206

doi: 10.1287/mnsc.1.3-4.197
Tintner G. Stochastic linear programming with applications to agriculturaleconomics. In: Antosiewicz H A, ed. Second Symposium in Linear Programming. Washington, DC, 1955, 197―228
Bellman R E. Dynamic Programming. Princeton,N J: Princeton University Press, 1957
Charnes A, Cooper W W. Chance-constrained programming. ManagementScience, 1959, 6(1): 73―79

doi: 10.1287/mnsc.6.1.73
Bellman R E, Zadeh L A. Decision-makingin a fuzzy environment. Management Science, 1970, 17(4): 141―164

doi: 10.1287/mnsc.17.4.B141
Horner P R. The father of linear programming. OR/MS Today, 1999, 26(5): 26―30
Rustem B. A constrained min max algorithm for rival models of thesame economic-system. Mathematical Programming, 1992, 53(3): 279―295

doi: 10.1007/BF01585707
Rustem B, Nguyen Q. Analgorithm for the inequality-constrained discrete min-max problem. SIAM Journal on Optimization1998, 8(1): 265―283

doi: 10.1137/S1056263493260386
Darlington J, Pantelides C C, Rustem B, Tanyi B A. An algorithm for constrained nonlinear optimization underuncertainty. Automatica, 1999, 35(2): 217―228

doi: 10.1016/S0005-1098(98)00150-2
Darlington J, Pantelides C C, Rustem B, Tanyi B A. Decreasing the sensitivity of open-loop optimal solutionsin decision making under uncertainty. EuropeanJournal of Operational Research, 2000, 121(2): 343―362

doi: 10.1016/S0377-2217(99)00034-X
Zakovic S, Pantelides C, Rustem B. An interior point algorithmfor computing saddle points of constrained continuous minimax. Annals of Operations Research, 2000, 99: 59―77

doi: 10.1023/A:1019284715657
Zakovic S, Rustem B. Semi-infiniteprogramming and applications to minimax problems. Annals of Operations Research, 2003, 124(1―4), 81―110

doi: 10.1023/B:ANOR.0000004764.76984.30
Akrotirianakis I, Rustem B. Globallyconvergent interior-point algorithm for nonlinear programming. Journal of Optimization Theory and Applications2005, 125(3): 497―521

doi: 10.1007/s10957-005-2086-2
Parpas P, Rustem B, Pistikopoulos E N. Linearly constrained globaloptimization and stochastic differential equations. Journal of Global Optimization, 2006, 36(2): 191―217

doi: 10.1007/s10898-006-9026-z
Sahinidis N V. Optimization under uncertainty: state-of-the-art andopportunities. Computers & ChemicalEngineering, 2004, 28(6―7): 971―983

doi: 10.1016/j.compchemeng.2003.09.017
Kall P, Wallace S W. Stochastic Programming. Chichester: John Wiley & Sons, 1994
Acevedo J, Pistikopoulos E N. Computational studies of stochastic optimization algorithms for processsynthesis under uncertainty. Computers& Chemical Engineering, 1996, 20(Suppl.1): S1―S6

doi: 10.1016/0098-1354(96)00011-7
Ierapetritou M G, Pistikopoulos E N. Novel optimization approach of stochastic planning-models. Industrial & Engineering Chemistry Research, 1994, 33(8): 1930―1942

doi: 10.1021/ie00032a007
Liu M L, Sahinidis N V. Optimization in process planning under uncertainty. Industrial & Engineering Chemistry Research, 1996, 35(11): 4154―4165

doi: 10.1021/ie9504516
Acevedo J, Pistikopoulos E N. Stochastic optimization based algorithms for process synthesis underuncertainty. Computers & Chemical Engineering, 1998, 22(4―5): 647―671

doi: 10.1016/S0098-1354(97)00234-2
Bernardo F P, Pistikopoulos E N, Saraiva P M. Integration and computationalissues in stochastic design and planning optimization problems. Industrial & Engineering Chemistry Research, 1999, 38(8): 3056―3068

doi: 10.1021/ie9807001
Ahmed S, Sahinidis N V, Pistikopoulos E N. An improved decompositionalgorithm for optimization under uncertainty. Computers & Chemical Engineering, 2000, 23(11―12): 1589―1604

doi: 10.1016/S0098-1354(99)00317-8
Bonfill A, Bagajewicz M, Espuna A, Puigjaner L. Risk management in the scheduling of batch plants underuncertain market demand. Industrial &Engineering Chemistry Research, 2004, 43(3): 741―750

doi: 10.1021/ie030529f
Santoso T, Ahmed S, Goetschalckx M, Shapiro A. A stochastic programming approach for supply chain networkdesign under uncertainty. European Journalof Operational Research, 2005, 167(1), 96―115

doi: 10.1016/j.ejor.2004.01.046
Fava J A, Denison R, Jones B, Curran M A, Vigon B, Selke S, Barnum J. ATechnical Framework for Life-Cycle Assessments. Washington, D.C: SETAC Foundation, 1991
International Organisationfor Standardisation (ISO). ISO 14040 Environmentalmanagement―Life cycle assessment―Principles and framework. Tech Rep, Geneva, 2006
International Organisationfor Standardisation (ISO). ISO 14044 Environmentalmanagement―Life cycle assessment―Requirements and guidelines. Tech Rep, Geneva, 2006
Marechal F, Weber C, Favrat D. Multiobjective design and optimizationof urban energy systems. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Hugo A. Environmentally conscious process selection, design andoptimization. Dissertation for the DoctoralDegree. Imperial College London, 2005
Li Z, Gao D, Chang L, Liu P, Pistikopoulos E N. Hydrogen infrastructure designand optimization: A case study of China. International Journal of Hydrogen Energy, 2008, 33(20): 5275―5286

doi: 10.1016/j.ijhydene.2008.06.076
Kikkinides E S. Hydrogen-based energy systems: the storage challenge. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Kuhn D, Parpas P, Rustem B. Stochastic optimization ofinvestment planning problems in the electric power industry. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Dabros M, Perrier M, Forbes F, Fairbank M, Stuart P R. Model-based direct search optimization of the broke recirculationsystem in a newsprint mill. Journal ofCleaner Production, 2003, 13(15): 1416―1423

doi: 10.1016/j.jclepro.2005.04.012
Salazar E, Samson R, Munnoch K, Stuart P R. Identifying environmental improvement opportunities fornewsprint production using life cycle assessment (LCA).In: 91st Annual Meeting of the Pulp-and-Paper- Technical-Association-of-Canada. Montreal, Canada, 2005, 107: 32―38
Gaudreault C, Samson R, Stuart P R. Life-cycle thinking in thepulp and paper industry, part 2: LCA studies and opportunities fordevelopment. TAPPI Journal, 2007, 6(8): 3―10.
Gaudreault C, Samson R, Stuart P R. Life-cycle thinking in thepulp and paper industry, part I: Current practices and most promisingavenues. TAPPI Journal, 2007, 6(7): 25―31
Laflamme-Mayer M, Linkewich J, Stuart P R. Methodology for using real-timeprocess data for cost modeling and supply chain decision support inthe pulp and paper industry. Pulp &Paper-Canada, 2008, 109(3): 44―51
Kouramas K, Pistikopoulos E N. Wind turbines modeling and control. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process SystemsEngineering. Weinheim: Wiley-VCH, 2008
Pereira F E, Keskes E, Galindo A, Jackson G, Adjiman C S. Integrated design of CO2 capture processesfrom natural gas. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Klemes J J, Bulatov I, Perry S J. Energy efficiency and carbonfootprint reduction. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
Markowski M, Urbaniec K. Optimizationof structure and operating parameters of a sequence of distillationcolumns for thermal separation of hydrogen. In: Georgiadis M C, Kikkinides E S, Pistikopoulos E N, eds. Energy Systems Engineering. Process Systems Engineering. Weinheim: Wiley-VCH, 2008
[1] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[2] Deepak KUMAR,D. K. MOHANTA,M. Jaya Bharata REDDY. Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission[J]. Front. Energy, 2015, 9(1): 91-105.
[3] Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
[4] Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH. Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems[J]. Front. Energy, 2014, 8(2): 182-191.
[5] Zhong ZHENG , Dan GAO , Linwei MA , Zheng LI , Weidou NI , . CO capture and sequestration source-sink match optimization in Jing-Jin-Ji region of China[J]. Front. Energy, 2009, 3(3): 359-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed