Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (2) : 252-261    https://doi.org/10.1007/s11708-010-0036-7
Research articles
Numerical simulation of biodiesel fuel combustion and emission characteristics in a direct injection diesel engine
Yi REN,Ehab ABU-RAMADAN,Xianguo LI,
Mechanical and Mechatronics Engineering Department, University of Waterloo, Ontario N2L 3G1, Canada;
 Download: PDF(538 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NOx emissions formation.
Keywords biodiesel      diesel engine      CFD simulation      combustion      pollutant formation      
Issue Date: 05 June 2010
 Cite this article:   
Yi REN,Ehab ABU-RAMADAN,Xianguo LI. Numerical simulation of biodiesel fuel combustion and emission characteristics in a direct injection diesel engine[J]. Front. Energy, 2010, 4(2): 252-261.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0036-7
https://academic.hep.com.cn/fie/EN/Y2010/V4/I2/252
Huang Z H, Wang H W, Chen H Y. Study on combustion characteristics ofa compression ignition engine fueled with dimethyl ether. Proc Inst Mech Eng, Part D, J Automobile Eng, 1999, 213(D6): 647―652
Huang Z H, Jiang D M, Zeng K, Liu B, Yang Z L. Combustion characteristicsand heat release analysis of a DI compression ignition engine fueledwith Diesel-dimethyl carbonate blends. Proc Inst Mech Eng, Part D, J Automobile Eng, 2003, 217(D7): 595―606
Beatrice C, Capaldi P, Del N. Giacomo, Analysis of impactof diesel fuel/biodiesel blends on a modern diesel combustion systemperformance by means of injection test rig, optical and real SC engineexperiments. SAE paper 2009―01―0484, 2009
Murugesan A, Umarani C, Subramanian R, Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable EnergyReviews, 2009, 13(3): 653―662,.

doi: 10.1016/j.rser.2007.10.007
Graboski M S, McCormik R L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci, 1998, 24(2): 125―164

doi: 10.1016/S0360-1285(97)00034-8
Knothe G, Krahl J, Van G J. The Biodiesel Handbook. New York: AOCS Press, 2005, 76
Chakravarthy K, McFarlane J, Daw S. Physical properties of bio-dieseland implications for use of bio-diesel in diesel engines. SAE 2007―01―4030,2007
Sharp C A, Howell S A, Jobe J. The effect of biodiesel fuelson transient emissions from modern diesel engines. Part I: Regulated emissions and performance. SAE paper 2000―01―1967, 2000
Sharp C A, Howell S A, Jobe J. The effect of biodiesel fuelson transient emissions from modern diesel engines. Part II: Regulated emissions and performance. SAE paper 2000―01―1968, 2000
Rakopoulos C D, Rakopoulos D C, Hountalas D T, Giakoumis E G, Andritsakis E C. Performance and emissions of bus engine using blends of diesel fuelwith bio-diesel of sunflower or cottonseed oils derived from Greekfeedstock. Fuel, 2008, 87(2): 147―157

doi: 10.1016/j.fuel.2007.04.011
Rakopoulos C D, Antonopoulos K A, Rakopoulos D C, Hountalas D T, Giakoumis E G. Comparative performance and emissions study of a direct injectionDiesel engine using blends of Diesel fuel with vegetable oils or bio-dieselsof various origins. Energy Conversion andManagement, 2006, 47(18,19): 3272―3287
Bannister C D, Hawley J G, Ali H M, Chuck C J, Price P, Brown A J, Pickford W. Quantifyingthe effects of biodiesel blend ratio, at varying ambient temperatures,on vehicle performance and emissions. SAE paper 2009―01―1893, 2009
Fang T, Lee C F. Bio-dieseleffects on combustion processes in an HSDI diesel engine using advancedinjection strategies. Proceedings of theCombustion Institute, 2009, 32(2): 2785―2792

doi: 10.1016/j.proci.2008.07.031
Zhao F, Asmus T W, Assanis D N, Dec J E, Eng J A, Najit P M. Homogeneous Charge Compression Ignition (HCCI) Engines:Key Research and Development Issues. Warrendale, USA: SAE International, 2003, 11―12
Pogoreve P, Kegl B, Skerget L. Diesel and biodiesel fuel spray simulations. Energy & Fuels, 2008, 22(2): 1266―1274

doi: 10.1021/ef700544r
Choi C Y, Bower G R, Reitz R D. Effects of biodiesel blended fuels andmultiple injections on D. I. diesel engine emissions. SAE paper 970218, 1997
Lee C S, Park S W, Kwon S I. An experimental study on the atomizationand combustion characteristics of biodiesel-blended fuels. Energy & Fuels, 2005, 19(5): 2201―2208

doi: 10.1021/ef050026h
Szybist J P, Mcfarlane J, Bruce G B. Combustion of simulated andexperimental combustion of biodiesel blends in a single cylinder dieselHCCI engine. SAE paper 2007―01―4010, 2007
Mao G, Wang Z, Yang D, Yuan Y. Numericalsimulation and experimental research on the free spray characteristicsof bio-diesel fuel. SAE paper 2008―01―1598, 2008
Park S H, Kim H J, Suh H, K, Lee C S. Experimental and numerical analysis of spray-atomization characteristicsof biodiesel fuel in various fuel and ambient temperatures conditions. International Journal of Heat and Fluid Flow, 2009, 30(5): 960―970

doi: 10.1016/j.ijheatfluidflow.2009.04.003
Pogorev P, Kegl B, Skerget L. Diesel and biodiesel fuel spray simulations. Energy & Fuels, 2008, 22(2): 1266―1274

doi: 10.1021/ef700544r
Stringer V L, Cheng W L, Lee C F, Hansen A C. Comparing the operation of an HSDI engine using multiple injectionschemes with soybean biodiesel, diesel and their blends. SAE paper 2009―01―0719, 2009
Ra Y, Retiz R D, Mcfarlane J, Daw C S. Effects of fuel physical properties on diesel engine combustion usingdiesel and bio-diesel fuels. SAE paper2008―01―1379, 2008
Golovitchev V I, Yang J. Constructionof combustion models for rapeseed methyl ester bio-diesel fuel forinternal combustion engine applications. Biotechnology Advances, 2009, 27(5): 641―655

doi: 10.1016/j.biotechadv.2009.04.024
Gaïl S, Sarathy S M, Thomson M J, Diévart P, Dagaut P. Experimentaland chemical kinetic modeling study of small methyl esters oxidation:methyl (E)-2-butenoate and methyl butanoate. Combustion and Flame, 2008, 155(4): 635―650

doi: 10.1016/j.combustflame.2008.04.007
Fisher E M, Pitz W J, Curran H J, Westbrook C K. Detailed chemical kinetic mechanisms for combustion of oxygenatedfuels. Proceedings of the Combustion Institute, 2000, 28: 1579―1586

doi: 10.1016/S0082-0784(00)80555-X
Brakora J L, Ra Y, Retiz R D, Mcfarlane J, Daw C S. Development and validationof a reduced reaction mechanism for biodiesel-fueled engine simulation. SAE paper 2008―01―1378, 2008
Herbinet O, Pitz W J, Westbrook C K. Detailed chemical kineticoxidation mechanism for a biodiesel surrogate. Combustion and Flame, 2008, 154(3): 507―528

doi: 10.1016/j.combustflame.2008.03.003
Boulanger J, Neill W S, Liu F, Smallwood G J. An improved phenomenological soot formation submodel for three-dimensionaldiesel engine simulations: extension to agglomeration of particlesinto clusters. Journal of Engineering forGas Turbines and Power, 2008, 130(6): 062808―062814,.

doi: 10.1115/1.2939003
Boulanger J, Liu F, Neill W S, Smallwood G J. An improved soot formation model for 3D diesel engine simulations. Journal of Engineering for Gas Turbines and Power, 2007, 129(3): 877―884

doi: 10.1115/1.2718234
Guo H, Smallwood G J. The interaction between soot and NO formation in a laminar axisymmetriccoflow ethylene/air diffusion flame. Combustionand Flame, 2007, 149(1―2): 225―233

doi: 10.1016/j.combustflame.2006.11.006
Launder B E, Spalding D B. Mathematical Models of Turbulence. London: Academic Press, 1972
Yakhot V, Smith L M. The renormalizationgroup, the ϵ-expansion and Derivation of turbulence models. Journal of Scientific Computing, 1992, 7(1): 35―61

doi: 10.1007/BF01060210
Ren Y, Li X G. Numericalstudy on combustion and emissions characteristics of a direct injection(DI) diesel engine. Proceedings of CombustionInstitute–Canadian Section, 2009, 18―23
Han Z, Reitz R D. Turbulencemodeling of internal combustion engines using RNG k-ϵ models. Combust Sci and Tech, 1995, 106(4―6): 267―295

doi: 10.1080/00102209508907782
Reitz R D. Modeling atomization processes in high-pressure vaporizingsprays. Atomization and Spray Technology, 1987, 3(4): 309―337,.
Reitz R D. Atomization and other breakup regimes of a liquid jet.Dissertation for the Doctoral Degree. PrincetonUniversity, 1978

doi: 10.1063/1.863650
Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet. The Physics of Fluids, 1982, 25: 1730―1742

doi: 10.1098/rspa.1950.0052
Reitz R D, Bracco F V. Mechanism of breakup of round liquid jets. In: Cheremisnoff N ed. The Encyclopediaof Fluid Mechanics, Houston, TX: Gulf Publishing, 1986, 233―249
Taylor G I. The instability of liquid surfaces when accelerated ina direction perpendicular to their planes. Proceedings of the Royal Society of London. Series A, Mathematicaland Physical Sciences, 1950, 201(1065): 192―196
Senecal P K. Development of a methodology for internal combustionengine design using multi-dimensional modeling with validation throughexperiments. Dissertation for the DoctoralDegree. Department of Mechanical Engineering, University of Wisconsin-Madison, 2000
Patel A, Kong S C, Reitz R D. Development and validation of a reducedreaction mechanism for HCCI engine simulations. SAE paper 2004―01―0558, 2004
Heywood J B. Internal Combustion Engine Fundamentals. New York: McGraw Hill, Inc., 1988
Hiroyasu H, Kadota T. Modelsfor combustion and formation of nitric oxide and soot in DI dieselengines. SAE Paper 760129, 1976

doi: 10.1243/14680874JER05005
Nagle J, Strickland-Constable R F. Oxidation of carbon between 1000―2000°C. Proc of the Fifth Carbon Conf1, Oxford: Pergamon Press, 1962, 154
Yaws C L. Chemical properties handbook: physical, thermodynamic,environmental, transport, safety, and health related properties fororganic and inorganic chemicals.NewYork: McGraw-Hill, 1999
Cheng A S, Upatnieks A, Mueller C J. Investigation of the impactof biodiesel fuelling on NOx emissions using an optical direct injectiondiesel engine. International Journal ofEngine Research, 2006, 7(4): 297―318
Senecal P K, Richard K J, Pomraning E. A new parallel cut-cell cartesianCFD code for rapid grid generation applied to in-cylinder diesel enginesimulations. SAE Paper 2007―01―0159, 2007
[1] M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation[J]. Front. Energy, 2017, 11(4): 568-574.
[2] Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU. Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery[J]. Front. Energy, 2017, 11(4): 527-534.
[3] Yi REN,Xianguo LI. Assessment and validation of liquid breakup models for high-pressure dense diesel sprays[J]. Front. Energy, 2016, 10(2): 164-175.
[4] Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN. Active fuel design—A way to manage the right fuel for HCCI engines[J]. Front. Energy, 2016, 10(1): 14-28.
[5] Solomon O. GIWA,Sunday O. ADEKOMAYA,Kayode O. ADAMA,Moruf O. MUKAILA. Prediction of selected biodiesel fuel properties using artificial neural network[J]. Front. Energy, 2015, 9(4): 433-445.
[6] SUKARNI,SUDJITO,Nurkholis HAMIDI,Uun YANUHAR,I.N.G. WARDANA. Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere[J]. Front. Energy, 2015, 9(2): 125-133.
[7] Nurul Atiqah Izzati MD ISHAK,Ismail Ab RAMAN,Mohd Ambar YARMO,Wan Mohd Faizal WAN MAHMOOD. Ternary phase behavior of water microemulsified diesel-palm biodiesel[J]. Front. Energy, 2015, 9(2): 162-169.
[8] Zuohua HUANG, Jinhua WANG, Erjiang HU, Chenglong TANG, Yingjia ZHANG. Progress in hydrogen enriched hydrocarbons combustion and engine applications[J]. Front Energ, 2014, 8(1): 73-80.
[9] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[10] Lingge SUI, Zhongchang LIU, Yongqiang HAN, Jing TIAN. Transient emission simulation and optimization of turbocharged diesel engine[J]. Front Energ, 2013, 7(2): 237-244.
[11] Cunwen WANG, Lu CHEN, Bajpai RAKESH, Yuanhang QIN, Renliang LV. Technologies for extracting lipids from oleaginous microorganisms for biodiesel production[J]. Front Energ, 2012, 6(3): 266-274.
[12] Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU. Effect of Fe on NO release during char combustion in air and O2/CO2[J]. Front Energ, 2012, 6(2): 200-206.
[13] Wu YU, Gen CHEN, Zuohua HUANG. Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend[J]. Front Energ, 2011, 5(4): 412-418.
[14] K. RAJKUMAR, P. GOVINDARAJAN. Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine[J]. Front Energ, 2011, 5(4): 398-403.
[15] Shiyan ZHENG. Unified cycle model of a class of internal combustion engines and their optimum performance characteristics[J]. Front Energ, 2011, 5(4): 367-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed