Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 527-534    https://doi.org/10.1007/s11708-010-0109-7
RESEARCH ARTICLE
Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube
Xin ZOU, Maoqiong GONG(), Gaofei CHEN, Zhaohu SUN, Jianfeng WU
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m2·s) and heat fluxes ranging from 13.1 to 65.5 kW/m2. The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within±30%.

Keywords flow boiling      heat transfer      binary mixture      R290/R152a     
Corresponding Author(s): GONG Maoqiong,Email:gongmq@mail.ipc.ac.cn   
Issue Date: 05 December 2010
 Cite this article:   
Xin ZOU,Jianfeng WU,Maoqiong GONG, et al. Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube[J]. Front Energ Power Eng Chin, 2010, 4(4): 527-534.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0109-7
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/527
1 Park Y, Kang J, Choi J, Yoo J K, Kim H. Vapor-liquid equilibria for the 1,1-difluoroethane (HFC-152a) + propane (R-290) system. Journal of Chemical and Engineering Data , 2007, 52(4): 1203-1208
doi: 10.1021/je060501l
2 Jung D S, McLinden M, Radermacher R, Didion D. A study of flow boiling heat transfer with refrigerant mixtures. International Journal of Heat and Mass Transfer , 1989, 32(9): 1751-1764
doi: 10.1016/0017-9310(89)90057-4
3 Taylor B N, Kuyatt C E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1297, 1994 Edition , 1994
4 Zou X, Gong M Q, Chen G F, Sun Z H, Zhang Y, Wu J F. Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in a horizontal tube. International Journal of Refrigeration , 2009, 32(2): 371-380
5 Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer , 1986, 29(3): 351-358
doi: 10.1016/0017-9310(86)90205-X
6 Liu Z, Winterton R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer , 1991, 34(11): 2759-2766
doi: 10.1016/0017-9310(91)90234-6
7 Shah M M. Chart correlation for saturated boiling heat transfer: equations and further studies. ASHRAE Transactions , 1982, 88(1): 185-196
8 Kandlikar S G. An improved correlation for predicting two-phase flow boiling heat transfer coefficient in horizontal and vertical tubes. In: Kitto J B J, ed. 21th ASME/AIChE national heat transfer conference. ASME, Seattle , 1983
9 Kew P A, Comwell K. Correlations for the prediction of boiling heat transfer in small diameter channels. Applied Thermal Engineering , 1997, 17(8-10): 705-715
doi: 10.1016/S1359-4311(96)00071-3
10 Copper M G. Saturation nucleate pool boiling: a simple correlation. In: 1st UK Natl. Heat Transfer Conf (I Chem E Symp series No. 86) . 1984, 2: 785-793
11 Sun Z H, Gong M Q, Li Z J, Wu J F. Nucleate pool boiling heat transfer coefficients of pure HFC134a, HC290, HC600a and their binary and ternary mixtures. International Journal of Heat and Mass Transfer , 2007, 50(1,2): 94-104
12 Jung D S, McLinden M, Radermacher R, Didion D. Horizontal flow boiling heat transfer experiments with a mixture of R22/R114. International Journal of Heat and Mass Transfer , 1989, 32(1): 131-145
doi: 10.1016/0017-9310(89)90097-5
13 Niederkrüger M, Steiner D, Schlünder E U. Horizontal flow boiling experiments of saturated pure components and mixture of R846/R12 at high pressures. International Journal of Refrigeration , 1992, 15(1): 48-58
[1] Yanxing ZHAO, Maoqiong GONG, Haocheng WANG, Hao GUO, Xueqiang DONG. Development of mobile miniature natural gas liquefiers[J]. Front. Energy, 2020, 14(4): 667-682.
[2] Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Front. Energy, 2020, 14(3): 452-462.
[3] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[4] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[5] Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review[J]. Front. Energy, 2019, 13(1): 172-184.
[6] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[7] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[8] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[9] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[10] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[11] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[12] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
[13] Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Front Energ, 2012, 6(1): 1-11.
[14] Jinying YIN, Linhua LIU. Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space power systems[J]. Front Energ Power Eng Chin, 2011, 5(2): 166-173.
[15] C Y ZHAO, D ZHOU, Z G WU. Heat transfer of phase change materials (PCMs) in porous materials[J]. Front Energ, 2011, 5(2): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed