Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 535-541    https://doi.org/10.1007/s11708-010-0113-y
RESEARCH ARTICLE
Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat exchangers
Ping ZHANG, Guoliang DING()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The successive sub?stitution (SS) method is a suitable approach to solving the transient distributed-parameter model for heat exchangers. However, this method must be enhanced because its convergence heavily depends on the iterative initial pressure. When the iterative initial pressure is improperly assigned, the calculated flow rates become negative values, causing the state parameters to exhibit negative values as well. Therefore, a predictor-corrector algorithm (PCA) is proposed to improve the convergence of the SS method. A predictor is developed to determine an appropriate iterative initial pressure. Total fluid mass is adopted as the convergence criterion of pressure iteration instead of outlet flow rate as is done in the SS method. Convergence analysis and case study of the PCA and SS method are conducted, which show that the PCA has better convergence than the SS method under the same working conditions.

Keywords algorithm      convergence      heat exchanger      modeling      transient     
Corresponding Author(s): DING Guoliang,Email:glding@sjtu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Ping ZHANG,Guoliang DING. Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat exchangers[J]. Front Energ Power Eng Chin, 2010, 4(4): 535-541.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0113-y
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/535
1 Wedekind G L, Stoecker W F. Transient response of the mixture-vapor transition point in horizontal evaporating flow, ASHRAE Transactions , 1966, 72(II): IV.2.1–IV.2.15
2 Chi J, Didion D. A simulation model of the transient performance of a heat pump, International Journal of Refrigeration , 1982, 5(3): 176–184
doi: 10.1016/0140-7007(82)90099-8
3 Fu L, Ding G L, Zhang C L. Dynamic simulation of air-to-water dual-mode heat pump with screw compressor. Applied Thermal Engineering , 2003, 23(13): 1629–1645
doi: 10.1016/S1359-4311(03)00109-1
4 Pettit N B O L, Willatzen M, Plong-S?rensen L. A general dynamic simulation model for evaporators and condensers in refrigeration part II: simulation and control of an evaporator. International Journal of Refrigeration , 1998, 21(5): 404–414
doi: 10.1016/S0140-7007(97)00092-3
5 Zhang W J, Zhang C L. A generalized moving-boundary model for transient simulation of dry-expansion evaporators under larger disturbances. International Journal of Refrigeration , 2006, 29(7): 1119–1127
doi: 10.1016/j.ijrefrig.2006.03.002
6 Nyers J, Stoyan G. A dynamic model adequate for controlling the evaporator of a heat pump. International Journal of Refrigeration , 1994, 17(2): 101–108
doi: 10.1016/0140-7007(94)90050-7
7 Jia X, Tso C P, Chia P K, Jolly P. A distributed model for prediction of the transient response of an evaporator. International Journal of Refrigeration , 1995, 18(5): 336–342
doi: 10.1016/0140-7007(95)00015-4
8 Aprea C, Renno C. An air cooled tune-fin evaporator model for an expansion valve control law. Mathematical and Computer Modeling , 1999, 30(7–8): 135–146
doi: 10.1016/S0895-7177(99)00170-3
9 Wang C C. A numerical method for thermally non-equilibrium condensing flow in a double-pipe condenser. Applied Thermal Engineering , 1997, 17(7): 647–660
doi: 10.1016/S1359-4311(96)00092-0
10 Wang H, Touber S. Distributed and non-steady-state modeling of an air cooler. International Journal of Refrigeration , 1991, 14(2): 98–111
doi: 10.1016/0140-7007(91)90082-R
11 Jia X, Tso C P, Jolly P, Wong Y W. Distributed steady and dynamic modeling of dry-expansion evaporators. International Journal of Refrigeration , 1999, 22(2): 126–136
doi: 10.1016/S0140-7007(98)00043-7
12 Tso C P, Cheng Y C, Lai A C K. Dynamic behavior of a direct expansion evaporator under frosting condition Part I. Distributed model. International Journal of Refrigeration , 2006, 29(4): 611–623
doi: 10.1016/j.ijrefrig.2005.09.018
13 Koury R N N, Machado L, Ismail K A R. Numerical simulation of a variable speed refrigeration system. International Journal of Refrigeration , 2001, 24(2): 192–200
doi: 10.1016/S0140-7007(00)00014-1
14 Mithraratne P, Wijeysundera N E, Bong T Y. Dynamic simulation of a thermostatically controlled counter-flow evaporator. International Journal of Refrigeration , 2000, 23(3): 174–189
doi: 10.1016/S0140-7007(99)00048-1
15 Mithraratne P, Wijeysundera N E. An experimental and numerical study of the dynamic behavior of a counter-flow evaporator. International Journal of Refrigeration , 2001, 24(6): 554–565
doi: 10.1016/S0140-7007(00)00053-0
16 Jiang H B, Radermacher R. A distributed model of a space heat pump under transient conditions. International Journal of Energy Research , 2003, 27(2): 145–160
doi: 10.1002/er.864
17 Rice C K. The effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictors. ASHRAE Transactions , 1987, 93(part 1): 341–367
18 Ding G L. Recent developments in simulation techniques for vapour-compression refrigeration systems. International Journal of Refrigeration , 2007, 30(7): 1119–1133
doi: 10.1016/j.ijrefrig.2007.02.001
19 Ding G L. Dynamic simulation and optimization of small refrigeration equipments. Dissertation for the Doctoral Degree . Shanghai: Shanghai Jiao Tong University, 1993, 45–67
20 Gungor K E, Winterton, R H S. A general correlation for flow boiling in tubes and annuli. International Journal of Heat Mass Transfer , 1986, 29(3): 351–358
doi: 10.1016/0017-9310(86)90205-X
21 Ding G L, Wu Z G, Liu J, Inagaki T, Wang K J, Fukaya M. An implicit curve-fitting method for fast calculation of thermal properties of pure and mixed refrigerants. International Journal of Refrigeration , 2005, 28(6): 921–932
doi: 10.1016/j.ijrefrig.2005.01.014
[1] Jitan WU, Yonglin JU. Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers[J]. Front. Energy, 2020, 14(4): 683-698.
[2] Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm[J]. Front. Energy, 2020, 14(3): 649-665.
[3] S. Rupesh, C. Muraleedharan, P. Arun. Energy and exergy analysis of syngas production from different biomasses through air-steam gasification[J]. Front. Energy, 2020, 14(3): 607-619.
[4] Linrui MA, Zhifeng WANG, Ershu XU, Li XU. Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages[J]. Front. Energy, 2020, 14(2): 283-297.
[5] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[6] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[7] Haizheng DANG, Dingli BAO, Zhiqian GAO, Tao ZHANG, Jun TAN, Rui ZHA, Jiaqi LI, Ning LI, Yongjiang ZHAO, Bangjian ZHAO. Theoretical modeling and experimental verifications of the single-compressor-driven three-stage Stirling-type pulse tube cryocooler[J]. Front. Energy, 2019, 13(3): 450-463.
[8] Chuan Choong YANG, Chit Siang SOH, Vooi Voon YAP. A systematic approach in load disaggregation utilizing a multi-stage classification algorithm for consumer electrical appliances classification[J]. Front. Energy, 2019, 13(2): 386-398.
[9] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[10] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[11] Seiya MAKI, Shuichi ASHINA, Minoru FUJII, Tsuyoshi FUJITA, Norio YABE, Kenji UCHIDA, Gito GINTING, Rizaldi BOER, Remi CHANDRAN. Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia[J]. Front. Energy, 2018, 12(3): 426-439.
[12] Suraj TALELE, Caleb TRAYLOR, Laura ARPAN, Cali CURLEY, Chien-Fei CHEN, Julia DAY, Richard FEIOCK, Mirsad HADZIKADIC, William J. TOLONE, Stan INGMAN, Dale YEATTS, Omer T. KARAGUZEL, Khee Poh LAM, Carol MENASSA, Svetlana PEVNITSKAYA, Thomas SPIEGELHALTER, Wei YAN, Yimin ZHU, Yong X. TAO. Energy modeling and data structure framework for Sustainable Human-Building Ecosystems (SHBE) — a review[J]. Front. Energy, 2018, 12(2): 314-332.
[13] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
[14] Kinattingal SUNDARESWARAN,Kevin Ark KUMAR,Payyalore Raman VENKATESWARAN,Sankaran PALANI. Solar photovoltaic fed dual input LED lighting system with constant illumination control[J]. Front. Energy, 2016, 10(4): 473-478.
[15] Homayoun EBRAHIMIAN,Bahman TAHERI,Nasser YOUSEFI. Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and costs using improved ABC algorithm[J]. Front. Energy, 2015, 9(4): 426-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed