Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    0, Vol. Issue () : 270-287    https://doi.org/10.1007/s11708-010-0126-6
REVIEW ARTICLE
Micro/nanofluidics-enabled energy conversion and its implemented devices
Yang YANG1(), Jing LIU1,2
1. Key Laboratory of Cryogenics (Y0AS011010), Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100080, China
 Download: PDF(934 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most people were not aware of the role of energy as a basic force that drives the development and economic growth of the world until the two great oil crises occurred. According to the conservation law, energy not only exists in various forms but is also capable of being converted from one form to another. The common forms of energy are mechanical energy, chemical energy, internal energy, electrical energy, atomic energy, and electromagnetic energy, among others. The fluids in nature serve as the most common carriers and media in the energy conversion process. Following the rapid development of microelectromechanical systems (MEMS) technology, the energy supply and conversion issue in micro/nano scale has also been introduced in research laboratories worldwide. With unremitting efforts, great quantities of micro/nano scale energy devices have been investigated. Micro/nanofluid shows distinct features in transporting and converting energy similar to their counterpart macroscale tasks. In this paper, a series of micro/nanofluid-enabled energy conversion devices is reviewed based on the transformation between different forms of energy. The evaluation and contradistinction of their performances are also examined. The role of micro/nanofluid as media in micro/nano energy devices is summarized. This contributes to the establishment of a comprehensive and systematic structure in the relationship between energy conversion and fluid in the micro/nano scale. Some fundamental and practical issues are outlined, and the prospects in this challenging area are explored.

Keywords micro/nanofluid      different energy forms      energy conversion      medium role     
Corresponding Author(s): YANG Yang,Email:yangy@mail.ipc.ac.cn   
Issue Date: 05 September 2011
 Cite this article:   
Yang YANG,Jing LIU. Micro/nanofluidics-enabled energy conversion and its implemented devices[J]. Front Energ, 0, (): 270-287.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0126-6
https://academic.hep.com.cn/fie/EN/Y0/V/I/270
Fig.1  Sketch of energy conversion recurring in micro/nanofluid
fuel statefuelreaction formulan(e)Erev°/V
gas-basedhydrogenH2+0.5O2→H2O21.23
liquid-basedmethanolCH3OH+1.5O2→CO2+2H2O61.21
soluble vanadium redoxV2++VO2++2H+?VO2++H2O+V3+11.246
formic acidHCOO-+OH-+ClO-?Cl-+CO32-+H2O21.74
HCOOH+KMnO4→0.5K2MnO4+0.5MnO2+H2O+CO221.31
HCOOH+0.5O2→CO2+H2O21.48
Tab.1  Summary of information on the different fuels
Fig.2  Schematic of a micro gas-based fuel cell design [–]
Fig.3  Schematic of the μDMFC design
(a) Illustration of a methanol fueled μDMFC element in Ref. []; (b) cut view of the micro DMFC system in Ref. []; (c) schematic cross-section of the μDMFC with the integrated Nafion strip in Ref. []; (d) schematic of the process flows and reactions in the methanol decomposition fuel processor approach in Ref. []
Fig.4  Schematic of the membraneless micro liquid-based fuel cell design
(a) Schematic design of a single cell in Ref. []; (b) schematics of electrode design and flow paths of the radial membraneless fuel cell in Ref. [] as in the above isometric projection and beneath the cross-section of the radial flow fuel cell
fuelstructural characteristicsoxidantreferencecatalyst (anode and cathode)max open voltage/Vmax power densityoperating temperature/°C
hydrogen (H2)μPEM fuel cellO2[43]Pt1room temperature
[44]Pt or Pd0.7900.282 mWroom temperature to 80°C
[45]Graphite0.8710.773 mWroom temperature
[48]Au0.980.17 mW
separator membraneless[46,47]Pt, Pd or Pd/PtH2SO4NaOH0.897 V0.925 V
methanolμPEM fuel cell[49]101.0 W/cm3room temperature
O2 from air[36]47.2 mW/cm260
O2 from air[50]Pt/Ru
O2[51,52]Pt-Ru catalyst/Pt0.412.0 mW/cm2
O2 from air[5355]Au0.189.25 mW/cm2
H2SO4[56]Au1.50 mW/cm2room temperature
membranelessH2O2[65]NiOH/AgO28.7 μW/cm2
formic acidμPEM fuel cellKMnO4[58]Pt-Pd0.6–0.8
KMnO4[59]Pt1.3125
membranelessH2SO4KMnO4[66]Pt black0.40.550.16 mW/cm22.20 mW/cm260–80
NaClO[61]Pt/Au0.850.0 mW/cm2room temperature
O2 from air[67]Pd/Pt on graphite26.0 mW/cm2room temperature
KMnO4[68]Pt0.90.65 mW/cm2
soluble vanadiummembranelessVO2+[60]Au/graphite1.59
VO2+[6264]Au-supported carbon1.5131 mW/cm2
glucosemembranelessO2 from air[71]PLL-VK3/Dp/GDH-coated/BOD-adsorbed KB electrode0.60.015 mW/cm2room temperature
O2 from air[72]Auroom temperature
O2 from air[73,74]Au0.30.11 mW/cm223
ethanolmembranelessO2 from air[75]Pt0.340.02 mW/cm2room temperature
KOHmembranelessO2 from air[76]Al1.9018.5 mW/cm2
Tab.2  Performance of both gas-based and liquid-based micro fuel cell devices demonstrated in previous references
Fig.5  Schematic of the EDL design
(a) Schematic diagram of an EDL at the channel wall in Ref. []; (b) schematic of the experimental setup with a electrokinetic streaming potential device in Ref. []
Fig.6  Schematic of the energy conversion from mechanical energy into electricity
(a) Conceptual illustration of the synthetic leaf design and measured ΔC vs. time for the bubble transiting between the capacitor plates in Ref. []; (b) three-dimensional cross-view schematics of the microfluidic-electric package and the real view of the power before assembly in Ref. []
Fig.7  Schematic of an NG that operates in biofluid and the two types of connections used to characterize the performance of the NG (The pink and blue curves represent signals from the forward connected current/voltage (I/V) meter and the reversely connected I/V meter, respectively.)
Fig.8  Schematic illustration of the pumping of fluid using a sequential bubble pump and its SEM micrograph (The successive voltage pulses to generate bubbles were applied in a time sequence through .)
Fig.9  Exploded view of the three-wafer combustor, catalytic insert and the invar plates for packaging and catalytic pieces being inserted into a six-wafer combustor during fabrication in Ref. []
Fig.10  Cross-section of the assembled combustors and its components fabricated using DRIE in Ref. []
Fig.11  Schematic of the micro combustor design
(a) Schematic of the suspended-tube reactor; (b) SEM of F2-released reactor showing four suspended SiN tubes connected to the Si reaction zone, Si slabs thermally linking the four tubes, and a meandering Ti/Pt resistor; (c) photograph of a reactor heated to ~900°C in air (the supporting chip and package are below 50°C) in Ref. []
Fig.12  Operation sequence of the bubble-powered micropump at a cycle frequency of 0.4 Hz and at 40% duty ratio in Ref. []
Fig.13  Schematic of the micropump design
(a) Micropump concept: complete device schematic illustrating the control factors and design parameters; (b) photograph of a fully assembled micropump in Ref. []
Fig.14  Working principle of the micro/nano scale ice pump
Fig.15  Schematic of the electromagnetic power generator design
(a) Three-dimensional schematic of the proposed energy scavengers; (b) SLA-fabricated micro-generators with an electromagnetic electrical power generator [Windbelt-based micro-generator (left) and Helmholtz resonator based micro-generator (right)] in Ref. []
1 Jiang Z M. Reflections on energy issues in China. Journal of Shanghai Jiaotong University , 2008, 42(3): 345–359 (in Chinese)
2 Chen H S. Japan energy supply, demand and structural changes. Contemporary Economy of Japan , 2009, 167(5): 24–28 (in Chinese)
3 Dai Y D, Ren D M. Review the status and effects of renewable energy of China in term of the energy issues faced by China during the national economy development. Renewable Energy , 2005, 120(2): 4–8 (in Chinese)
4 Ye X D. Outlet of predicament: basic experience of Denmark in dealing with energy source problems and revelation. China Population Resources and Environment , 2006, 16(1): 92–95 (in Chinese)
5 Zhang J Y. Development of energy in Thailand. Southeast Asian Affairs , 2009, 137(1): 12–18 (in Chinese)
6 Yang Z H. Energy issue and Sino-American relations. Coal , 2006, 15(6): 16–17 (in Chinese)
7 Jiang M Y, Wang C M. Rational countermeasures to the issue of Chinese energy. Journal of Shandong University of Science and Technology (Social Sciences) , 2007, 9(1): 56–61 (in Chinese)
8 Parker S P. McGraw-Hill Encyclopedia of Energy. Columbus, OH , USA: McGraw-Hill Companies, Inc, 1980
9 Li M, Dai L R. Biophysics: energy, information and life. Shanghai: Science & Technology Press of Shanghai, 2006 (in Chinese)
10 Li F Z. The World of Energy. Changchun: Jilin Publishing Group Ltd , 2009 (in Chinese)
11 Cheng L. Energy Source. Jinan: Shandong Science & Technology Press, 2008 (in Chinese)
12 Kellermayer M S Z, Smith S B, Granzier H L, Bustamante C. Folding-unfolding transitions in singletitin molecules characterized with laser tweezers. Science , 1997, 276(5315): 1112–1116
doi: 10.1126/science.276.5315.1112
13 Fernandez J M, Chu S, Oberhauser A F. RNA structure: Pulling on hair (pins). Science , 2001, 292(5517): 653–654
doi: 10.1126/science.1060884
14 Sato T. Micro/nano manipulation world. In: Proc IROS . 1996, 834–841
15 Jager E W H, Ingan?s O, Lundstr?m I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science , 2000, 288(5475): 2335–2338
doi: 10.1126/science.288.5475.2335
16 Lu J H, Li H K, An H J, Wang G H, Wang Y, Li M Q, Zhang Y, Hu J. Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR. J Am Chem Soc , 2004, 126(36): 11136–11137
doi: 10.1021/ja047124m
17 Curran S, Carroll D L, Ajayan P M, Redlich P, Roth S, Rühle M, Blau W. Picking needles from the nanotube-haystack. Adv Mater , 1998, 10(4): 311–313
doi: 10.1002/(SICI)1521-4095(199803)10:4<311::AID-ADMA311>3.0.CO;2-U
18 Fu L M, Yang R J, Lin C H, Chien Y S. A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis , 2005, 5(9): 1814–1824
doi: 10.1002/elps.200410222
19 John T, Mezi? I. Maximizing mixing and alignment of orientable particles for reaction enhancement. Phys Fluids , 2007, 19(12): 123602–123617
doi: 10.1063/1.2819343
20 Khatavkar V, Anderson P D, Toonder J M J, Meijer H E H. Active micromixer based on artificial cilia. Phys Fluids , 2007, 19(8): 083605–083608
doi: 10.1063/1.2762206
21 Tai R H. MEMS & Microsystems-Design and Manufacture. Columbus, OH, USA: McGraw-Hill Companies, Inc, 2002
22 Nowak R. A DARPA perspective on small fuel cells for the military. Solid State Energy Conversion Alliance (SECA) Workshop, Arlington, VA , 2001
23 Dyer C. Fuel cells for portable applications. Journal of Power Sources , 2002, 106(1,2): 31–34
24 Hoogers G. Fuel Cell Technology Handbook. Boca Raton: CRC Press, 2002
25 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature , 2001, 414(6861): 359–367
doi: 10.1038/35104644
26 Dhar S K, Ovshinsky S R, Gifford P R, Corrigan D A, Fetcenko M A, Venkatesan S. Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date. Journal of Power Sources , 1997, 65(1,2): 1–7
27 Maynard H L, Meyers J P. Miniature fuel cells for portable power: design considerations and challenges. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , 2002, 20(4): 1287–1297
doi: 10.1116/1.1488641
28 Service R F. Shrinking fuel cells promise power in your pocket. Science , 2002, 296(5571): 1222–1224
doi: 10.1126/science.296.5571.1222
29 Larminie J, Dicks A. Fuel Cell Systems Explained. 2nd ed. Chichester: John Wiley & Sons Ltd, 2003
30 Kelley S C, Deluga G A, Smyrl W H. Miniature fuel cells fabricated on silicon substrates. J Am Inst Chem Eng , 2002, 48(5): 1071–1082
31 Narayanan S R, Valdez T I, Clara F. Development of a miniature fuel cell for portable applications. In: Proceedings of the 199th Meeting on Direct Methanol Fuel Cell. Washington, DC, USA , 2001, 254–263
32 Chang H, Kim J R, Cho J H, Kim H K, Choi K H. Materials and processes for small fuel cells. Solid State Ionics , 2002, 148(3): 601–606
doi: 10.1016/S0167-2738(02)00125-X
33 Bostaph J, Koripella R, Fisher A, Zindel D, Hallmark J, Neutzler J, Bai L. Microfluidic fuel delivery system for 100 mW DMFC. In: Proceedings of the 199th Meeting on Direct Methanol Fuel Cell. Washington, DC, USA , 2001, 274–285
34 Lu G Q, Wang C Y, Yen T J, Zhang X. Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochim Acta , 2004, 49(5): 821–828
doi: 10.1016/j.electacta.2003.09.036
35 Yao S C, Tang X, Hsieh C C, Alyousef Y, Vladimer M, Fedder G K, Amon C H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy , 2006, 31(5): 636–649
doi: 10.1016/j.energy.2005.10.016
36 Yen T J, Fang N, Zhang X, Lu G Q, Wang C Y. A micro methanol fuel cell operating at near room temperature. Applied Physics Letters , 2003, 83(19): 4056–4068
doi: 10.1063/1.1625429
37 Phirani J, Basu S. Analyses of fuel utilization in microfluidic fuel cell. Journal of Power Sources , 2008, 175(1–3): 261–265
doi: 10.1016/j.jpowsour.2007.08.099
38 Hoogers G. Fuel Cell Technology Handbook. Boca Raton: CRC Press, 2002
39 Appleby A, Foulkes F. Fuel Cell Handbook. New York: Van Nostrand Reinhold, 1989
40 Narayanan S R, Valdez T I. Portable direct methanol fuel cell systems. In: Vielstich W, Lamm A, Gasteiger H A, eds. Handbook of Fuel Cells–Fundamentals, Technology and Application, Hoboken , NJ: Wiley, 2003, 1133
41 Bailey C. Advances in R&D for the commercialization of small fuel cells and battery technologies for use in portable applications. In: Proceedings of the Conference on Advances in R&D for the Commercialization of Small Fuel Cells and Battery Technologies for Use in Portable Application. Bethesda, MD , 1999
42 Choi J W, Sung W. A planar and membraneless microscale fuel cell using nickel and silver as catalysts. In: Technical Digest of the 13th International Conference on Solid-State Sensors, Actuators, and Microsystems . 2005, 1852–1855
43 Dyer C K. A novel thin-film electrochemical device for energy conversion. Nature , 1990, 343(6253): 547–548
doi: 10.1038/343547a0
44 Shah K, Shin W C, Besser R S. A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques. Sensors and Actuators B , 2004, 97(2,3): 157–167
45 Park B Y, Madou M J. Miniature PEM fuel cell with pyrolyzed carbon microfluidic plates. The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, USA , 2006
46 Mitrovski S M, Elliott L C C, Nuzzo R G. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2–O2 fuel cell. Langmuir , 2004, 20(17): 6974–6976
doi: 10.1021/la048417w
47 Mitrovski S M, Nuzzo R G. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance. Lab on a Chip , 2006, 6(3): 353–361
doi: 10.1039/b513829a
48 Zhu L, Lin K Y, Morgan R D, Swaminathan V V, Kim H S, Gurau B, Kim D, Bae B, Masel R I, Shannon M A. Integrated micro-power source based on a micro-silicon fuel cell and a micro electromechanical system hydrogen generator. Journal of Power Sources , 2008, 185(2): 1305–1310
doi: 10.1016/j.jpowsour.2008.09.028
49 Mench M M, Wang Z H, Bhatia K, Wang C Y. Design of a micro direct methanol fuel cell (μDMFC). In: Proceedings of the IMECE’01, International Mechanical Engineering Congress and Exposition (IMECE). New York, USA , 2001
51 Torres N, Santander J, Esquivel J P, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C. Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors and Actuators B , 2008, 132(2): 540–544
doi: 10.1016/j.snb.2007.11.035
52 Esquivel J P, Sabaté N, Santander J, Torres N, Cané C. Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsyst Technol , 2008, 14(4): 535–541
doi: 10.1007/s00542-007-0451-9
53 Kamitani A, Morishita S, Kotaki H, Arscott S. Fuel supply optimization in micro fuel cells. Procedia Chemistry , 2009, 1(1): 457–460
doi: 10.1016/j.proche.2009.07.114
54 Kamitani A, Morishita S, Kotaki H, Arscott S. Improved fuel use efficiency in microchannel direct methanol fuel cells using a hydrophilic macroporous layer. Journal of Power Sources , 2009, 187(1): 148–155
doi: 10.1016/j.jpowsour.2008.10.085
55 Kamitani A, Morishita S, Kotaki H, Arscott S. Microfabricated microfluidic fuel cells. Sensors and Actuators B: Chemical , 2009
doi: 10.1016/j.snb.2009.11.014 pmid:, (in Press)
56 Shen M, Walter S, Gijs M A M. Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip. Journal of Power Sources , 2009, 193(2): 761–765
doi: 10.1016/j.jpowsour.2009.03.055
57 Wilson M S. Methanol decomposition fuel processor for portable power applications. International Journal of Hydrogen Energy , 2009, 34(7): 2955–2964
doi: 10.1016/j.ijhydene.2009.02.005
58 Song Y A, Batist C, Sarpeshkar R, Han J. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin. Journal of Power Sources , 2008, 183(2): 674–677
doi: 10.1016/j.jpowsour.2008.05.085
59 Wadsworth C J, Yanagisawa N, Dutta D. Nanochannel arrays as supports for proton exchange membranes in microfluidic fuel cells. Journal of Power Sources , 2010, 195(11): 3636–3639
doi: 10.1016/j.jpowsour.2009.12.032
60 Ferrigno R, Stroock A D, Clark T D, Mayer M, Whitesides G M. Membraneless vanadium redox fuel cell using laminar flow. Journal of the American Chemical Society , 2002, 124(44): 12930–12931
doi: 10.1021/ja020812q
61 Kjeang E, Michel R, Harrington D A, Sinton D, Djilali N. An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. Electrochimica Acta , 2008, 54(2): 698–705
doi: 10.1016/j.electacta.2008.07.009
62 Kjeang E, Proctor B T, Brolo A G, Harrington D A, Djilali N, Sinton D. High-performance microfluidic vanadium redox fuel cell. Electrochimica Acta , 2007, 52(15): 4942–4946
doi: 10.1016/j.electacta.2007.01.062
63 Kjeang E, McKechnie J, Sinton D, Djilali N. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. Journal of Power Sources , 2007, 168(2): 379–390
doi: 10.1016/j.jpowsour.2007.02.087
64 Kjeang E, Michel R, Harrington D A, Djilali N, Sinton D. A Microfluidic fuel cell with flow-through porous electrodes. Journal of the American Chemical Society , 2008, 130(12): 4000–4006
doi: 10.1021/ja078248c
65 Sung W, J W Choi. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. Journal of Power Sources , 2007, 172(1): 198–208
doi: 10.1016/j.jpowsour.2007.07.012
66 Choban E R, Markoski L J, Wieckowski A, Kenis P J A. Microfluidic fuel cell based on laminar flow. Journal of Power Sources , 2004, 128(1): 54–60
doi: 10.1016/j.jpowsour.2003.11.052
67 Jayashree R S, Gancs L, Choban E R, Primak A, Natarajan D, Markoski L J, Kenis P J A. Air-breathing laminar flow-based microfluidic fuel cell. Journal of the American Chemical Society , 2005, 127(48): 16758–16759
doi: 10.1021/ja054599k
68 Sun M H, Casquillas G V, Guo S S, Shi J, Ji H, Ouyang Q, Chen Y. Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering , 2007, 84(5–8): 1182–1185
doi: 10.1016/j.mee.2007.01.175
69 Salloum K S, Hayes J R, Friesen C A, Posner J D. Sequential flow membraneless microfluidic fuel cell with porous electrodes. Journal of Power Sources , 2008, 180(1): 243–252
doi: 10.1016/j.jpowsour.2007.12.116
70 Katz E, Filanovsky B, Willner I. A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New Journal of Chemistry , 1999, 23: 481–487
doi: 10.1039/a808561g
71 Togo M, Takamura A, Asai T, Kaji H, Nishizawa M. Structural studies of enzyme-based microfluidic biofuel cells. Journal of Power Sources , 2008, 178(1): 53–58
doi: 10.1016/j.jpowsour.2007.12.052
72 Chau L H, Ip J S C, Leung K C F, Li W J, Wong K W. Development of a bio-energy generation system based on microfluidic platform. In: 2008 International Conference on Information and Automation (ICIA 2008). Changsha, China , 2008, 1379–1382
doi: 10.1109/ICINFA.2008.4608217
73 Zebda A, Renaud L, Cretin M, Pichot F, Innocent C, Ferrigno R, Tingry S. A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature. Electrochemistry Communications , 2009, 11(3): 592–595
doi: 10.1016/j.elecom.2008.12.036
74 Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S. Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. Journal of Power Sources , 2009, 193(2): 602–606
doi: 10.1016/j.jpowsour.2009.04.066
75 Moore C M, Minteer S D, Martin R S. Microchip-based ethanol/oxygen biofuel cell. Lab on a Chip , 2005, 5(2): 218–225
doi: 10.1039/b412719f
76 Cardenas-Valencia A M, Challa V R, Fries D, Langebrake L, Benson R F, Bhansali S. A micro-fluidic galvanic cell as an on-chip power source. Sensors and Actuators B , 2003, 95(1–3): 406–413
doi: 10.1016/S0925-4005(03)00446-5
77 Lyklema J. Fundamentals of Interface and Colloid Science. New York: Academic, 1995
78 Yang J, Lu F Z, Kostiuk L W, Kwok D Y. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering , 2003, 13(6): 963–970
doi: 10.1088/0960-1317/13/6/320
79 Daiguji H, Yang P, Szeri A J, A Majumdar. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett , 2004, 4(12): 2315–2321
doi: 10.1021/nl0489945
80 Lu M C, Satyanarayana S, Karnik R, Majumdar A, Wang C C. A mechanical-electrokinetic battery using a nano-porous membrane. Journal of Micromechanics and Microengineering , 2006, 16(4): 667–675
doi: 10.1088/0960-1317/16/4/001
81 Osterle J F. Electrokinetic energy conversion. Journal of Applied Mechanics , 1964, 31(1): 161–164
82 Burgreen D, Nakache F R. Efficiency of pumping and power generation in ultrafine electrokinetic systems. Journal of Applied Mechanics , 1965, 32(3): 675–679
83 Morrison F A, Osterle J F. Electrokinetic energy conversion in ultrafine capillaries. Journal of Chemical Physics , 1965, 43(6): 2111–2115
doi: 10.1063/1.1697081
84 Khair A S, Squires T M. Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. Journal of Fluid Mechanics , 2008, 615: 323–334
doi: 10.1017/S002211200800390X
85 Joly L, Ybert C, Trizac E, Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces. Physical Review Letters , 2004, 93(25): 257805
doi: 10.1103/PhysRevLett.93.257805
86 Ren C L, Li D Q. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Analytica Chimica Acta , 2005, 531(1): 15–23
doi: 10.1016/j.aca.2004.09.078
87 Heyden F H J, Bonthuis D J, Stein D, Meyer C, Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters , 2006, 6(10): 2232–2237
doi: 10.1021/nl061524l
88 Chang C C, Yang R J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluidics and Nanofluidics , 2010, 9(2–3): 225–241
89 Ren Y Q, Stein D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology , 2008, 19 (19) : 195707-1–195707-6
doi: 10.1088/0957-4484/19/19/195707
90 Chun M S, Shim M S, Choi N W. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Lab on a Chip , 2006, 6(2): 302–309
doi: 10.1039/b514327f
91 Heyden F H J, Bonthuis D J, Stein D, Meyer C, Dekker C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters , 2007, 7(4): 1022–1025
doi: 10.1021/nl070194h
92 Borno R T, Steinmeyer J D, Maharbiz M M. Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Applied Physics Letters , 2009, 95(1): 013705-1–013705-3
doi: 10.1063/1.3157144
93 Namasivayam V, Larson R G, Burke D T, Burns M A. Transpiration-based micropump for delivering continuous ultra-low flow rates. Journal of Micromechanics and Microengineering , 2003, 13(2): 261–271
doi: 10.1088/0960-1317/13/2/314
94 Goedecke N, Eijkel J, Manz A. Evaporation driven pumping for chromatography application. Lab on a Chip , 2002, 2(4): 219–223
doi: 10.1039/b208031c
95 Wheeler T D, Stroock A D. Transpiration at negative pressures in a synthetic tree. Nature (London) , 2008, 455(7210): 208–212
doi: 10.1038/nature07226
96 Herrault F, Ji C H, Kim S H, Wu X S, Allen M G, A microfluidic-electric package for power mems generators. In: MEMS 2008. Tucson, AZ, USA , 2008, 112–115
97 Wang X D, Liu J, Song J H, Wang Z L. Integrated nanogenerators in biofluid. Nano Letters , 2007, 7(8): 2475–2479
doi: 10.1021/nl0712567
98 Hunter R J. Zeta Potential in Colloid Science, Principles and Applications. New York: Academic Press, 1981
99 Piyasena M E, Lopez G P, Petsev D N. An electrokinetic cell model for analysis and optimization of electroosmotic microfluidic pumps. Sensors and Actuators B: Chemical , 2006, 113(1): 461–467
doi: 10.1016/j.snb.2005.03.069
100 Paul P H, Arnold D W, Rakestraw D J. Electrokinetic generation of high pressures using porous microstructures. In: Proceedings of the-MicroTAS’ 98. Banff, Canada , 1998, 49–52
101 Paul P H, Arnold D W, Neyer D W, Smith K B. Electrokinetic pump application in micro-total analysis systems; mechanical actuation to HPLC. In: Proceedings of the-MicroTAS’ 00. Enschede, The Netherlands , 2000, 583–590
102 Chen L X, Wang H L, Ma J P, Wang C X, Guan Y F. Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sensors and Actuators B , 2005, 104(1): 117–123
doi: 10.1016/j.snb.2004.05.013
103 Ateya D A, Shah A A, Hua S Z. An electrolytically actuated micropump. Review of Scientific Instruments , 2004, 75(4): 915–920
doi: 10.1063/1.1687043
104 Koeneman P B, Busch-Vishniac I J, Wood K L. Feasibility of micro power supplies for MEMS. Journal of Microelectromechanical Systems , 1997, 6(4): 355–362
doi: 10.1109/84.650133
105 Arana L R, Schaevitz S B, Franz A J, Jensen K F, Schmidt M A. A microfabricated suspended-tube chemical reactor for fuel processing. In: proceedings, IEEE micro electro mechanical systems. IEEE international conference on micro electro mechanical systems No15, Las Vegas NV, ETATS-UNIS , 2002, 232–235
106 Cao H L, Xu J L. Thermal performance of a micro-combustor for micro-gas turbine system. Energy Conversion and Management , 2007, 48(5): 1569–1578
doi: 10.1016/j.enconman.2006.11.022
107 Kumar S, Maruta K, Minaev S. Experimental investigations on the combustion behavior of methane–air mixtures in a micro-scale radial combustor configuration. Journal of Microelectromechanical Systems , 2007, 17(15): 900–908
108 Pattekar A V, Kothare M V. A microreactor for hydrogen production in micro fuel cell applications. Journal of Microelectromechanical Systems , 2004, 13(1): 7–18
doi: 10.1109/JMEMS.2004.823224
109 Lee D H, Kwon S. Heat transfer and quenching analysis of combustion in a micro combustion vessel. Journal of Microelectromechanical Systems , 2002, 12(5): 670–676
110 Spadaccini C M, Lee J, Lukachko S, Waitz I A, Mehra A, Zhang X. High power density silicon combustion systems for micro gas turbine engines. In: Proceedings of ASME TURBO EXPO 2002 Amsterdam, The Netherlands , 2002
111 Spadaccini C M, Zhang X, Cadouc C P, Mikia N, Waitz I A. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sensors and Actuators A , 2003, 103(1,2): 219–224
112 Shan X C, Wang Z F, Wu M, Hua J. Studies on a micro combustor for gas turbine engines. Journal of Micromechanics and Microengineering , 2008, 15(9): 17–22
113 Yang W M, Chou S K, Shu C, Li Z W, Xue H. Combustion in micro-cylindrical combustors with and without a backward facing step. Applied Thermal Engineering , 2002, 22(16): 1777–1787
doi: 10.1016/S1359-4311(02)00113-8
114 Loverich J J, Kanno I, Kotera H. Concepts for a new class of all-polymer micropumps. Lab on a Chip , 2006, 6: 1147–1154
doi: 10.1039/b605525g
115 Good B T, Bowman C N, Davis R H. A water-activated pump for portable microfluidic applications. Journal of Colloid and Interface Science , 2007, 305(2): 239–249
doi: 10.1016/j.jcis.2006.08.067
116 Farahi R H, Passian A, Zahrai S, Lereu A L, Ferrell T L, Thundat T. Microscale marangoni actuation: all-optical and all-electrical methods. Ultramicroscopy , 2006, 106(8,9): 815–821
117 Oroszi L, Dér A, Kirei H, Ormos P, Rakovics V. Control of electro-osmostic flow by light. Applied Physics Letters , 2006, 89(26): 263508-1–263508-3
doi: 10.1063/1.2424648
118 Satoh W, Hosono H, Suzuki H. On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Analytical Chemistry , 2005, 77(21): 6857–6863
doi: 10.1021/ac050821s
119 Sim W, Oh J, Choi B. Fabrication, experiment of a microactuator using magnetic fluid for micropump application. Microsystem Technologies , 2006, 12(12): 1085–1091
doi: 10.1007/s00542-006-0130-2
120 Yun K S, Cho I J, Bu J U, Kim C J, Yoon E. A surface-tension driven micropump for low-voltage and low-power operations. Journal of Microelectromechanical Systems , 2002, 11(5): 454–461
doi: 10.1109/JMEMS.2002.803286
121 Jung J Y, Kwak H Y. Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluid Nanofluid , 2007, 3(2): 161–169
doi: 10.1007/s10404-006-0116-5
122 Tsai J H, Lin L. A thermal-bubble-actuated micronozzlediffuser pump. Journal of Microelectromechanical Systems , 2002, 11(6): 665–671
doi: 10.1109/JMEMS.2002.802909
123 Gui L, Liu J. Feasibility study on a freeze-thaw phase change peristaltic pump. In: Annual Heat and Mass Transfer Conference of the Chinese Society of Engineering Thermophysics. Jilin, China , 2004, No. 043028 (in Chinese)
124 Pal R, Burns M A. Self-contained actuation of phase-change pistons in microchannels. Journal of Micromechanics and Microengineering , 2006, 16(4): 786–793
doi: 10.1088/0960-1317/16/4/015
125 Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications , 2003, 26(11): 1131–1144
doi: 10.1016/S0140-3664(02)00248-7
126 Kulah H, Najafi K. An electromagnetic micro power generator for low-frequency environmental vibrations. 2005-04-11. http://papers.sae.org/2005-01-1896
127 Sari I, Balkan T, Kulah H. A wideband electromagnetic micro power generator for wireless microsystems. In: International Conference on Solid-State Sensors, Actuators, and Microsystems. Lyon, France , 2007, 275–278
doi: 10.1109/SENSOR.2007.4300122
128 Herrault F, Ji C H, Shafer R H, Kim S HAllen M G. Ultraminiaturized milliwatt-scale permanent magnet generators. In: International Conference on Solid-State Sensors, Actuators, and Microsystems. Lyon, France , 2007, 899–902
doi: 10.1109/SENSOR.2007.4300276
129 Kim S H, Ji C H, Galle P, Herrault F, Wu X S, Lee J H, Choi C A, Allen M G. An electromagnetic energy scavenger from direct airflow. In: Proceedings of Power MEMS 2008+. Sendai, Japan , 2008
[1] Dongdong LIU, Yanyan CHEN, Wei DAI, Ercang LUO. Acoustic characteristics of bi-directional turbines for thermoacoustic generators[J]. Front. Energy, 2022, 16(6): 1027-1036.
[2] Wenwei LEI, Norihiro SUZUKI, Chiaki TERASHIMA, Akira FUJISHIMA. Hydrogel photocatalysts for efficient energy conversion and environmental treatment[J]. Front. Energy, 2021, 15(3): 577-595.
[3] Ahmed Mohmed DAFALLA, Fangming JIANG. Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells[J]. Front. Energy, 2021, 15(2): 460-472.
[4] Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU. A space power system of free piston Stirling generator based on potassium heat pipe[J]. Front. Energy, 2020, 14(1): 1-10.
[5] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[6] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[7] Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
[8] Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
[9] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[10] Nagulan SANTHOSH, Venkatesan BASKARAN, Arunachalam AMARKARTHIK. A review on front end conversion in ocean wave energy converters[J]. Front. Energy, 2015, 9(3): 297-310.
[11] Yajvender Pal VERMA, Ashwani KUMAR. Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation[J]. Front Energ, 2012, 6(2): 184-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed