Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (2) : 174-180    https://doi.org/10.1007/s11708-011-0140-3
RESEARCH ARTICLE
Heat transfer of phase change materials (PCMs) in porous materials
C Y ZHAO1(), D ZHOU2, Z G WU2
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Engineering, University of Warwick, Coventry, UK; 2. School of Engineering, University of Warwick, Coventry, UK
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.

Keywords heat transfer      thermal energy storage      phase change materials      natural convection      porous media     
Corresponding Author(s): ZHAO C Y,Email:changying.zhao@sjtu.edu.cn, c.y.zhao@warwick.ac.uk   
Issue Date: 05 June 2011
 Cite this article:   
D ZHOU,Z G WU,C Y ZHAO. Heat transfer of phase change materials (PCMs) in porous materials[J]. Front Energ, 2011, 5(2): 174-180.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0140-3
https://academic.hep.com.cn/fie/EN/Y2011/V5/I2/174
PCMsParaffin (RT 27)CaCl2·6H2ONaNO3
Melting point Tm/ °C25-2829306.8
Typical being: 27
Thermal conductivity/(W·m-1·K-1)Solid: 0.24Solid: 1.09Solid: 0.50
Liquid: 0.15Liquid: 0.54Liquid: 0.553 (329°C)
Heat of fusion/(kJ·kg-1)179190.8173.3
Density ρ/(kg·m-3)840 (Solid)1710 (Solid)2261 (Solid, 20°C)
750 (Liquid)1560 (Liquid)2042 (Liquid, 330°C)
Viscosity ηs/(Pa·s)50°C (Brookfield):0.01900.02250.00264(Liquid, 329°C)
Tab.1  Thermophysical characteristics of selected PCMs
MF1MF2MF3
MaterialCopperSteel alloySteel alloy
Density/(g·cm-3)0.4450.8890.445
Porosity/%959095
PPI102030
Tab.2  Specifications of the metal foams
Fig.1  Schematic diagram of the test rig
Fig.2  Temperature-time history of paraffin
Fig.3  Temperature-time history of calcium chloride hexahydrate
Fig.4  Temperature differences between the PCM (paraffin) and the heater
Fig.5  Temperature differences between the PCM () and the heater
Fig.6  Temperature shifts of calcium chloride hexahyrate with and without metal foams
Fig.7  Temperature differences between the heater and the local measuring points
Fig.8  1-5—solid-solid phase transition temperature at 276°C; 6-10—solid-liquid phase transition temperature at 306°C
Variation of temperature difference inside the containers for different samples
Fig.9  Comparison of average temperature differences inside the containers
1 Atul S, Tyagi V V, Chen C R, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews , 2009, 13(2): 318–345
doi: 10.1016/j.rser.2007.10.005
2 Bugaje I M. Enhancing the thermal response of latent heat storage systems. International Journal of Energy Research , 1997, 21(9): 759–766
doi: 10.1002/(SICI)1099-114X(199707)21:9<759::AID-ER254>3.0.CO;2-7
3 Koh J C Y, Stevens R L. Enhancement of cooling effectiveness by porous material in coolant passage. ASME Journal of Heat Transfer , 1975, 97(2): 309–311
doi: 10.1115/1.3450366
4 Chow L C, Zhong J K, Beam J E. Thermal conductivity enhancement for phase change storage media. International Communications in Heat and Mass Transfer , 1996, 23(1): 91–100
doi: 10.1016/0735-1933(95)00087-9
5 Erk H F, Dudukovic M P. Phase-change heat regenerators: modeling and experimental studies. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(3): 791–808
doi: 10.1002/aic.690420318
6 Chapotard C, Tondeur D. Dynamics of latent heat storage in fixed beds, a non-linear equilibrium model, the analogy with chromatography. Chemical Engineering Communications , 1983, 24(4): 183–204
doi: 10.1080/00986448308940081
7 Py X, Olives R, Mauran S. Paraffin/porous graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer , 2001, 44(14): 2727–2737
doi: 10.1016/S0017-9310(00)00309-4
8 Fukai J, Hamada Y, Morozumi Y, Miyatake O. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. International Journal of Heat and Mass Transfer , 2002, 45(24): 4781–4792
doi: 10.1016/S0017-9310(02)00179-5
9 Fukai J, Hamada Y, Morozumi Y, Miyatake O. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. International Journal of Heat and Mass Transfer , 2003, 46(23): 4513–4525
doi: 10.1016/S0017-9310(03)00290-4
10 Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon , 2005, 43(15): 3067–3074
doi: 10.1016/j.carbon.2005.06.042
11 Hoogendoom C J, Bart G C J. Performance and modeling of latent heat storage. Solar Energy , 1992, 48(1): 53–58
doi: 10.1016/0038-092X(92)90176-B
12 Mauran S, Prades P, L’haridon F. Heat and mass transfer in consolidated reacting beds for thermochemical systems. Heat Recovery Systems and CHP , 1993, 13(4): 315–319
doi: 10.1016/0890-4332(93)90055-Z
13 Tong X L, Amin M R, Khan J A. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numerical Heat Transfer Part A. Applications , 1996, 30(2): 125–141
doi: 10.1080/10407789608913832
14 Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Solar Energy Materials and Solar Cells , 2008, 92(6): 603–613
doi: 10.1016/j.solmat.2007.11.010
15 Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon , 2008, 46(1): 159–168
doi: 10.1016/j.carbon.2007.11.003
16 Pincemin S, Py X, Olives R, Christ M, Oettinger O. Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. Journal of Solar Energy Engineering , 2008, 130(1): 011005
doi: 10.1115/1.2804620
17 Siahpush A, O'Brien J, Crepeau J. Phase change heat transfer enhancement using copper porous foam. ASME Journal of Heat Transfer , 2008, 130(8): 082301
doi: 10.1115/1.2928010
18 Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer , 2002, 45(5): 1017–1031
doi: 10.1016/S0017-9310(01)00220-4
19 Boomsma K, Poulikakos D, Zwick F. Metal foams as compact high performance heat exchangers. Mechanics of Materials , 2003, 35(12): 1161–1176
doi: 10.1016/j.mechmat.2003.02.001
20 Zhao C Y, Kim T, Lu T J, Hodson H P. Thermal transport in high porosity cellular metal foams. Journal of Thermophysics and Heat Transfer , 2004, 18(3): 309–317
doi: 10.2514/1.11780
21 Zhao C Y, Lu T J, Hodson H P, Jackson J D. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Materials Science and Engineering: A , 2004, 367(1,2): 123–131
22 Zhao C Y, Lu T J, Hodson H P. Natural convection in metal foams with open cells. International Journal of Heat and Mass Transfer , 2005, 48(12): 2452–2463
doi: 10.1016/j.ijheatmasstransfer.2005.01.002
23 Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultralight metal foams with open cells. International Journal of Heat and Mass Transfer , 2004, 47(14-16): 2927–2939
doi: 10.1016/j.ijheatmasstransfer.2004.03.006
24 Zhao C Y, Lu T J, Tassou S A. Analytical considerations of thermal radiation in cellular metal foams with open cells. International Journal of Heat and Mass Transfer , 2008, 51(3, 4): 929–940
25 Zhao C Y, Lu W, Tassou S A. Flow boiling heat transfer in horizontal metal foam tubes. ASME Journal of Heat Transfer , 2009, 131(12): 121002
doi: 10.1115/1.3216036
[1] Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE. Viability of a concentrated solar power system in a low sun belt prefecture[J]. Front. Energy, 2020, 14(4): 850-866.
[2] Yanxing ZHAO, Maoqiong GONG, Haocheng WANG, Hao GUO, Xueqiang DONG. Development of mobile miniature natural gas liquefiers[J]. Front. Energy, 2020, 14(4): 667-682.
[3] Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Front. Energy, 2020, 14(3): 452-462.
[4] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[5] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[6] Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review[J]. Front. Energy, 2019, 13(1): 172-184.
[7] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[8] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[9] Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage[J]. Front. Energy, 2017, 11(4): 461-471.
[10] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[11] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[12] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[13] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[14] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
[15] Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Front Energ, 2012, 6(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed