Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (2) : 195-206    https://doi.org/10.1007/s11708-011-0148-8
RESEARCH ARTICLE
Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming
Yuzhang WANG(), Shilie WENG, Yiwu WENG
School of Mechanical Engineering, Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate.

Keywords planar solid oxide fuel cell (SOFC)      direct internal reforming      chemical reaction      methane      electrochemical     
Corresponding Author(s): WANG Yuzhang,Email:yuzhangwang@yahoo.com.cn   
Issue Date: 05 June 2011
 Cite this article:   
Yiwu WENG,Yuzhang WANG,Shilie WENG. Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming[J]. Front Energ, 2011, 5(2): 195-206.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0148-8
https://academic.hep.com.cn/fie/EN/Y2011/V5/I2/195
1 .National Energy Technology Laboratory. Fuel Cell Handbook. 7th Ed. Technical Report DOE/NETL 2004/1206, Morgantown, WV (2002); available at: http://www.brennstoffzellen.rwth-aachen.de/Links/FCHandbook7.pdf.
2 Bavarsad P G. Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy , 2007, 32(17): 4591-4599
doi: 10.1016/j.ijhydene.2007.08.004
3 Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources , 2004, 138(1-2): 120-136
doi: 10.1016/j.jpowsour.2004.06.040
4 Colpan C O, Dincer I, Hamdullahpur F. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy , 2007, 32(7): 787-795
doi: 10.1016/j.ijhydene.2006.10.059
5 Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources , 2006, 155(1): 13-22
doi: 10.1016/j.jpowsour.2004.11.075
6 Haseli Y, Dincer I, Naterer G F. Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. International Journal of Hydrogen Energy , 2008, 33(20): 5811-5822
doi: 10.1016/j.ijhydene.2008.05.036
7 Sangtongkitcharoen W, Assabumrungrat S, Pavarajarn V, Laosiripojana N, Praserthdam P. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane. Journal of Power Sources , 2005, 142(1): 75-80
doi: 10.1016/j.jpowsour.2004.10.009
8 Wang Q S, Li L J, Wang C. Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane. Journal of Power Sources , 2009, 186(2): 399-407
doi: 10.1016/j.jpowsour.2008.10.034
9 Finnerty C M, Ormerod R M. Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane: influence of anode formulation, pre-treatment and operating conditions. Journal of Power Sources , 2000, 86(1-2): 390-394
doi: 10.1016/S0378-7753(99)00498-X
10 Peters R, Dahl R, Klüttgen U, Palm C, Stolten D. Internal reforming of methane in solid oxide fuel cell systems. Journal of Power Sources , 2002, 106(1-2): 238-244
doi: 10.1016/S0378-7753(01)01039-4
11 Seo Y S, Shirley A, Kolaczkowski S T. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. Journal of Power Sources , 2002, 108(1-2): 213-225
doi: 10.1016/S0378-7753(02)00027-7
12 Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal , 2001, 82(1-3): 311-328
doi: 10.1016/S1385-8947(00)00367-3
13 Clarke S H, Dicks A L, Pointon K, Smith T A, Swann A. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today , 1997, 38(4): 411-423
doi: 10.1016/S0920-5861(97)00052-7
14 Zhu H Y, Kee R J. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources , 2003, 117(1-2): 61-74
doi: 10.1016/S0378-7753(03)00358-6
15 Wang Y Z, Yoshiba F, Watanabe T, Weng S L. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC. Journal of Power Sources , 2007, 170(1): 101-110
doi: 10.1016/j.jpowsour.2007.04.004
16 Wang Y Z, Yoshiba F, Kawase M, Watanabe T. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. International Journal of Hydrogen Energy , 2009, 34(9): 3885-3893
doi: 10.1016/j.ijhydene.2009.02.073
17 Wang Y Z, Li Y X, Weng S L, Wang Y H. Numerical simulation of counter-flow spray saturator for humid air turbine cycle. Energy , 2007, 32(5): 852-860
doi: 10.1016/j.energy.2006.05.008
18 Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. Journal of Power Sources , 2002, 110(1): 186-200
doi: 10.1016/S0378-7753(02)00277-X
19 Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources , 2001, 93(1-2): 130-140
doi: 10.1016/S0378-7753(00)00556-5
20 Hwang J J, Chen C K, Lai D Y. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC. Journal of Power Sources , 2005, 140(2): 235-242
doi: 10.1016/j.jpowsour.2004.08.028
21 Xu J, Froment G F. Methane steam reforming machination and water gas shift-I. Intrinsic kinetics. American Institute of Chemical Engineers , 1989, 35(1): 88-96
doi: 10.1002/aic.690350109
22 Costamagna P, Selimovic A, Del M B, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal , 2004, 102(1): 61-69
doi: 10.1016/j.cej.2004.02.005
[1] Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO. Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated surfactants[J]. Front. Energy, 2020, 14(3): 443-451.
[2] Xiang LI, Wenzheng ZHANG, Zhong HUANG, Dehao JU, Li HUANG, Mingzhi FENG, Xingcai LU, Zhen HUANG. Pre-chamber turbulent jet ignition of methane/air mixtures with multiple orifices in a large bore constant volume chamber: effect of air-fuel equivalence ratio and pre-mixed pressure[J]. Front. Energy, 2019, 13(3): 483-493.
[3] Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING. Redox flow batteries—Concepts and chemistries for cost-effective energy storage[J]. Front. Energy, 2018, 12(2): 198-224.
[4] Heba ALI, N. ISMAIL, M. S. AMIN, Mohamed MEKEWI. Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production[J]. Front. Energy, 2018, 12(2): 249-258.
[5] Shi SU, Xinxiang YU. Progress in developing an innovative lean burn catalytic turbine technology for fugitive methane mitigation and utilization[J]. Front Energ, 2011, 5(2): 229-235.
[6] Qiuying LI, Yonglin JU, Li WANG, . Liquefaction and impurity separation of oxygen-bearing coal-bed methane[J]. Front. Energy, 2010, 4(3): 319-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed