Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (4) : 412-418    https://doi.org/10.1007/s11708-011-0163-9
RESEARCH ARTICLE
Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend
Wu YU, Gen CHEN, Zuohua HUANG()
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the effect of cetane number (CN) improver on performance and emissions, including particulate number concentration and size distribution, of a turbocharged, common-rail diesel engine fueled with biodiesel-methanol were studied. Two volume fractions (0.3% and 0.6%) of CN improver were added to BM30 (30% of methanol in the biodiesel-methanol blend) in the experiment. The results show that, compared with those of biodiesel-methanol blend, the peak value of cylinder pressure increases, the second peak of heat release rate decreases, the start of second heat release are advanced, and the fuel economy and thermal efficiency are improved when CN improver is added to biodiesel-methanol blend. Besides, CO and HC emissions decrease, NOx emission varies little and smoke emissions increase slightly. Moreover, exhaust particles of BM30 mainly distribute in nano-size range. Furthermore, particle number concentration decreases and peak of size distribution profile shifts toward large size direction.

Keywords biodiesel      methanol      common-rail (CR) diesel engine      cetane number (CN) improver     
Corresponding Author(s): HUANG Zuohua,Email:zhhuang@mail.xjtu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Wu YU,Gen CHEN,Zuohua HUANG. Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend[J]. Front Energ, 2011, 5(4): 412-418.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0163-9
https://academic.hep.com.cn/fie/EN/Y2011/V5/I4/412
ItemsParameters
Type4-stroke, common rail injection
Cylinder number4
Combustion chamberω
Bore×stroke/mm293×102
Displacement/L2.771
Compression ratio17.2
Rated power/kW, speed/(r·min-1)70, 3600
Maximum torque/(N·m), speed/(r·min-1)225, 1600–2600
Tab.1  Engine specifications
Fig.1  Schematic diagram of the test bench
PropertiesDieselBiodieselMethanol2-EHN
CN5251.5<5
Density/(kg·m-3)840.1881.3794963
Viscosity (30°C)/(mm2·s-1)3.44.270.58
Low heating value/(MJ·kg-1)42.537.519.9
Heat of evaporation (kJ·kg-1)2603001100
Carbon/wt%86.177.137.554.9
Hydrogen/wt%13.811.812.59.7
Oxygen/wt%010.95027.4
Tab.2  Properties of fuels and CN improver
Fig.2  Cylinder pressure and heat release rate of different fuels
Fig.3  BSFC and BTE of different fuels
Fig.4  Brake specific CO emissions
Fig.5  Brake specific HC emissions
Fig.6  Brake specific NO emissions
Fig.7  Smoke emissions
Fig.8  Particle number-size distributions of exhaust gases
1 Lapuerta M, Armas O, Rodríguez-Fernández J. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science , 2008, 34(2): 198–223
doi: 10.1016/j.pecs.2007.07.001
2 Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management , 2009, 50(1): 14–34
doi: 10.1016/j.enconman.2008.09.001
3 Murugesan A, Umarani C, Subramanian R, Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines—a review. Renewable & Sustainable Energy Reviews , 2009, 13(3): 653–662
doi: 10.1016/j.rser.2007.10.007
4 Suh H K, Roh H G, Lee C S. Spray and combustion characteristics of biodiesel/diesel blended fuel in a direct injection common-rail diesel engine. Journal of Engineering for Gas Turbines and Power , 2008, 130(3): 032807–032809
doi: 10.1115/1.2835354
5 Huang Z H, Lu H B, Jiang D M, Zeng K, Liu B, Zhang J, Wang X B. Engine performance and emissions of a compression ignition engine operating on the diesel-methanol blends. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 2004, 218(4): 435–447
doi: 10.1243/095440704773599944
6 Cheung C S, Zhu L, Huang Z. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment , 2009, 43(32): 4865–4872
doi: 10.1016/j.atmosenv.2009.07.021
7 Zhu L, Cheung C S, Zhang W G, Huang Z. Influence of methanol-biodiesel blends on the particulate emissions of a direct injection diesel engine. Aerosol Science and Technology , 2010, 44(5): 362–369
doi: 10.1080/02786821003652646
8 Zhu L, Cheung C S, Zhang W G, Huang Z. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol. Science of the Total Environment , 2010, 408(4): 914–921
doi: 10.1016/j.scitotenv.2009.10.078 pmid:19926114
9 Lu X C, Yang J G, Zhang W G, Huang Z. Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol-diesel blend fuel. Fuel , 2004, 83(14,15): 2013–2020
10 Lü X C, Yang J G, Zhang W G , Huang Z. Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy & Fuels , 2005, 19(5): 1879–1888
doi: 10.1021/ef0500179
11 Li W, Ren Y, Wang X B, Miao H Y, Jiang D M, Huang Z H. Combustion characteristics of a compression ignition engine fuelled with diesel-ethanol blends. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 2008, 222(2): 265–274
doi: 10.1243/09544070JAUTO496
12 Liu S H, Zhu Z, Zhang Z J, Gao G X, Wei Y J. Effect of a cetane number (CN) improver on combustion and emission characteristics of a compression-ignition (CI) engine fueled with an ethanol-diesel blend. Energy & Fuels , 2010, 24(4): 2449–2454
doi: 10.1021/ef901543m
13 Huang Z H, Lu H B, Jiang D M, Zeng K, Liu B, Zhang J Q, Wang X B. Combustion characteristics and heat release analysis of a compression ignition engine operating on a diesel/methanol blend. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 2004, 218(9): 1011–1024
doi: 10.1243/0954407041856818
14 Tsolakis A. Effects on particle size distribution from the diesel engine operating on rme-biodiesel with EGR. Energy & Fuels , 2006, 20(4): 1418–1424
doi: 10.1021/ef050385c
15 Zhao H, Ge Y S, Wang X C, Tan J W, Wang A J, You K W. Effects of fuel sulfur content and diesel oxidation catalyst on PM emitted from light-duty diesel engine. Energy & Fuels , 2010, 24(2): 985–991
doi: 10.1021/ef900982c
[1] Solomon O. GIWA,Sunday O. ADEKOMAYA,Kayode O. ADAMA,Moruf O. MUKAILA. Prediction of selected biodiesel fuel properties using artificial neural network[J]. Front. Energy, 2015, 9(4): 433-445.
[2] Nurul Atiqah Izzati MD ISHAK,Ismail Ab RAMAN,Mohd Ambar YARMO,Wan Mohd Faizal WAN MAHMOOD. Ternary phase behavior of water microemulsified diesel-palm biodiesel[J]. Front. Energy, 2015, 9(2): 162-169.
[3] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[4] Cunwen WANG, Lu CHEN, Bajpai RAKESH, Yuanhang QIN, Renliang LV. Technologies for extracting lipids from oleaginous microorganisms for biodiesel production[J]. Front Energ, 2012, 6(3): 266-274.
[5] Zhengjiao TANG, Cunwen WANG, Weiguo WANG, Jia GUO, Yuanxin WU, Jinfang CHEN, Yigang DING. Simulation analysis of methanol flash distillation circulation process in biodiesel production with supercritical method[J]. Front Energ, 2011, 5(1): 93-97.
[6] Ni ZHANG, Zuohua HUANG, Xiangang WANG, Bin ZHENG. Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends[J]. Front Energ, 2011, 5(1): 104-114.
[7] Yi REN, Ehab ABU-RAMADAN, Xianguo LI, . Numerical simulation of biodiesel fuel combustion and emission characteristics in a direct injection diesel engine[J]. Front. Energy, 2010, 4(2): 252-261.
[8] Xiangang WANG, Zhiyuan ZHANG, Zuohua HUANG, Xibin WANG, Haiyan MIAO, . Experimental study on premixed combustion of spherically propagating methanol-air-nitrogen flames[J]. Front. Energy, 2010, 4(2): 223-233.
[9] Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG, . Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodiesel via supercritical methanol transesterification[J]. Front. Energy, 2009, 3(4): 423-431.
[10] Minghua WANG , Zheng LI , Weidou NI , . Design and analysis of dual fuel methanol-power poly-generation[J]. Front. Energy, 2009, 3(3): 341-347.
[11] Weidou NI , Zhen CHEN , Zheng LI , Jian GAO , . How to make the production of methanol/DME “GREENER”—Integration of wind power with modern coal chemical industry—[J]. Front. Energy, 2009, 3(1): 94-98.
[12] SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U. Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start[J]. Front. Energy, 2008, 2(4): 395-400.
[13] ZOU Hongbo, WANG Lijun, LIU Shenghua, LI Yu. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel[J]. Front. Energy, 2008, 2(3): 285-290.
[14] YAO Chunde, LIU Xibo, WANG Hongfu, LIU Xiaoping, CHENG Chuanhui, WANG Yinshan. Study on emissions reduction of DMCC engine with oxidation catalyst[J]. Front. Energy, 2007, 1(4): 441-445.
[15] WANG Xibin, CHEN Wansheng, GAO Jian, JIANG Deming, HUANG Zuohua. Spray characteristics of high-pressure swirl injector fueled with alcohol[J]. Front. Energy, 2007, 1(1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed