Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    0, Vol. Issue () : 155-163    https://doi.org/10.1007/s11708-012-0189-7
RESEARCH ARTICLE
A hybrid BFA-PSO algorithm for economic dispatch with valve-point effects
T. Jayabarathi(), Prateek Bahl, Harsha Ohri, Afshin Yazdani, V. Ramesh
School of Electrical Engineering, V I T University, Vellore 632014, India
 Download: PDF(134 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a novel and efficient method for solving the economic dispatch (ED) problems with valve-point effects, by integrating the biased velocity of particle swarm optimization (PSO) to the chemotaxis, swarming and reproduction steps of bacterial foraging algorithm (BFA). To include valve point effects sinusoidal terms are added to the fuel cost function. This makes the ED problems highly non-linear. In order to solve such problems the best cell (or particle) biased velocity (vector) is added to the random velocity of the BFA to reduce randomness in movement (evolution) and to increase swarming. This results in the hybrid bacterial foraging algorithm (HBFA). To demonstrate the effectiveness of the proposed HBFA method, numerical studies have been performed for three different sample systems. Comparison of the results obtained by the HBFA with the BFA and other evolutionary algorithms clearly show that the proposed method outperforms other methods in terms of convergence rate and solution quality in solving the ED problems with valve-point effects.

Keywords bacterial foraging algorithm (BFA)      economic dispatch (ED)      particle swarm optimization (PSO)      valve-point effects     
Corresponding Author(s): Jayabarathi T.,Email:tjayabarathi@vit.ac.in   
Issue Date: 05 June 2012
 Cite this article:   
T. Jayabarathi,Prateek Bahl,Harsha Ohri, et al. A hybrid BFA-PSO algorithm for economic dispatch with valve-point effects[J]. Front Energ, 0, (): 155-163.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0189-7
https://academic.hep.com.cn/fie/EN/Y0/V/I/155
1 Sinha N, R,Chakrabarti Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation , 2003, 7(1): 83-94
doi: 10.1109/TEVC.2002.806788
2 Park J-B, Jeong Y-W, Kim H-H, Shin J-R. An improved PSO for ED with valve-point effect. 2006-11, http://www.ijesp.com/Vol1No1/IJESP1-1Park.pdf
3 Liang Z X, Glover J D. A zoom feature for a dynamic programming solution to economic dispatch including transmission losses. IEEE Transactions on Power Systems , 1992, 7(2): 544-550
doi: 10.1109/59.141757
4 Bakirtzis A, Petridis V, Kazarlis S. Genetic algorithm solution to the economic dispatch problem. IEE Proceedings on Generation, Transmission and Distribution , 1994, 141(4): 377-382
doi: 10.1049/ip-gtd:19941211
5 Walters D C, Sheble G B. Genetic algorithm solution of economic dispatch with the valve point loading. IEEE Transactions on Power Systems , 1993, 8(3): 1325-1332
doi: 10.1109/59.260861
6 Lin W M, Cheng F S, Tsay M T. An improved Tabu search for economic dispatch with multiple minima. IEEE Transactions on Power Systems , 2002, 17(1): 108-112
doi: 10.1109/59.982200
7 Lee K Y, Sode-Yome A, Park J H. Adaptive Hopfield neural network for economic load dispatch. IEEE Transactions on Power Systems , 1998, 13(2): 519-526
doi: 10.1109/59.667377
8 Park J H, Kim Y S, Eom I K, Lee K Y. Economic load dispatch for piecewise quadratic cost function using Hopfield neural network. IEEE Transactions on Power Systems , 1993, 8(3): 1030-1038
doi: 10.1109/59.260897
9 Park J B, Lee K S, Shin J R, Lee K Y. A particle swarm optimization for economic dispatch with non-smooth cost functions. IEEE Transactions on Power Systems , 2005, 20(1): 34-42
doi: 10.1109/TPWRS.2004.831275
10 Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks (ICNN’95). Perth , 1995, 1942-1948
11 Yang X S, Hosseini S S S, Gandomi A H. Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing Journal , 2010, 12(3): 1180-1186
doi: 10.1016/j.asoc.2011.09.017
12 Passino K M. Biomimicry of bacterial foraging for distributed optimization and control. Control Systems Magazine, IEEE , 2002, 22(3): 52-67
doi: 10.1109/MCS.2002.1004010
13 Tang W J, Wu Q H, Saunders J R. Bacterial foraging algorithm for dynamic environments. In: IEEE Congress on Evolutionary Computation (CEC). Vancouver , 2006, 1324-1330
14 Farhat I A, El-Hawary M E. Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. Generation, Transmission & Distribution, 2010, 4(9): 989-999
doi: 10.1049/iet-gtd.2010.0109
15 Tang W J, Li M S, He S, Wu Q H, Saunders J R. Optimal power flow with dynamic loads using bacterial foraging algorithm. In: International Conference on Power System Technology. Chongqing , 2006, 1-5
16 Das T K, Venayagamoorthy G K, Aliyu U O. Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Transactions on Industry Applications , 2008, 44(5): 1445-1457
doi: 10.1109/TIA.2008.2002171
17 Mishra S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Transactions on Evolutionary Computation , 2005, 9(1): 61-73
doi: 10.1109/TEVC.2004.840144
18 Chen H, Zhu Y, Hu K. Self-adaptation in bacterial foraging optimization algorithm. In: Proceedings of 3rd International Conference on Intelligent System and Knowledge Engineering (ISKE). Xiamen , 2008, 1026-1031
19 Chu Y, Mi H, Liao H, Ji Z, Wu Q H. A fast bacterial swarming algorithm for high-dimensional function optimization. In: Proceedings of the 2008 IEEE congress on Evolutionary Computation. Hong Kong , 2008, 3135-3140
20 Saber A Y, Venayagamoorthy G K. Economic load dispatch using bacterial foraging technique with particle swarm optimization biased evolution. In: 2008 IEEE Swarm Intelligence Symposium. Missouri , 2008, 1-8
21 Gollapudi S V R S, Pattnaik S S, Bajpai O P, Devi S,Bakwad K M. Velocity modulated bacterial foraging optimization technique (VMBFO). Applied Soft Computing , 2011, 11(1): 154-165
doi: 10.1016/j.asoc.2009.11.006
22 Saber A Y. Economic dispatch using particle swarm optimization using bacterial foraging effects. Electrical Power and Energy Systems , 2012, 34(1): 38-46
doi: 10.1016/j.ijepes.2011.09.003
23 Duvvuru N, Swarup K S. A hybrid interior point assisted differential evolution algorithm for economic dispatch. IEEE Transactions on Power Systems , 2011, 26(2): 541-549
doi: 10.1109/TPWRS.2010.2053224
24 Chakraborty S, Senjyu T, Yona A, Saber A Y, Funabashi T. Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimization. IET Generation, Transmission & Distribution , 2011, 5(10): 1042-1052
doi: 10.1049/iet-gtd.2011.0038
[1] Yacine LABBI,Djilani Ben ATTOUS,Belkacem MAHDAD. Artificial bee colony optimization for economic dispatch with valve point effect[J]. Front. Energy, 2014, 8(4): 449-458.
[2] K. MURALI,T. JAYABARATHI. Solution to economic dispatch problem with valve-point loading effect by using catfish PSO algorithm[J]. Front. Energy, 2014, 8(3): 290-296.
[3] T. JAYABARATHI, Afshin YAZDANI, V. RAMESH. Application of the invasive weed optimization algorithm to economic dispatch problems[J]. Front Energ, 2012, 6(3): 255-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed