Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2012, Vol. 6 Issue (4) : 361-365    https://doi.org/10.1007/s11708-012-0210-1
RESEARCH ARTICLE
Laboratory experiment on using non-floating body to generate electrical energy from water waves
Arunachalam AMARKARTHIK1(), Srinivasan CHANDRASEKARAN2, Karuppan SIVAKUMAR1, Harender SINHMAR2
1. Bannari Amman Institute of Technology, Erode 638401, India; 2. Indian Institute of Technology Madras, Chennai 600036, India
 Download: PDF(135 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper describes an innovative method of using a non-buoyant body to harness ocean waves. All the point absorbers are buoyant in nature and move up due to buoyancy and come down because of gravity. The point absorbers are designed to move along the waves to make the device efficient. These devices face excessive stress during the rough weather on account of the extreme motion of waves and cause the total device failure. The present study shows that using a non-buoyant body for conventional point absorber principle is much efficient and safer than any other device proposed till today. A small scale wave energy converter with non-buoyant body was designed, fabricated and tested in small scale wave maker. An electrical generator was coupled with the device to generate electrical energy from harnessed waves. The generator was electrically loaded and the generated power was measured. It was found from the experiments that the proposed device showed a significant improvement in electricity generation and safety during extreme conditions. In addition to the electricity generation, the characteristics of the device were also studied by using various wave and device parameters.

Keywords ocean wave energy      point absorbers      heaving body      non-floating object      heave response ratio      electrical energy generation     
Corresponding Author(s): AMARKARTHIK Arunachalam,Email:a.amarkarthik@gmail.com   
Issue Date: 05 December 2012
 Cite this article:   
Arunachalam AMARKARTHIK,Karuppan SIVAKUMAR,Harender SINHMAR, et al. Laboratory experiment on using non-floating body to generate electrical energy from water waves[J]. Front Energ, 2012, 6(4): 361-365.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0210-1
https://academic.hep.com.cn/fie/EN/Y2012/V6/I4/361
Fig.1  Experimental setup at IITM
Fig.2  Schematic view of oscillating arm
Fig.3  Impact of wave amplitude on generated power under 30 W loading
Fig.4  Impact of wave period of output shaft speed under 30 W loading
Fig.5  Performance of device under 60 W electrical loading
1 De OFalc?o A F. Wave energy utilization: A review of the technologies. Renewable & Sustainable Energy Reviews , 2009, 14(3): 899–918
2 Falnes J. A review of wave-energy extraction. Marine Structures , 2007, 20(4): 185–201
doi: 10.1016/j.marstruc.2007.09.001
3 Eriksson M, Waters R, Svensson O, Isberg J, Leijon M. Wave power absorption: Experiments in open sea and simulation. Journal of Applied Physics , 2007, 102(8): 1–5
doi: 10.1063/1.2801002
4 Elwood D, Yim S C, Prudell J, Stillinger C, von Jouanne A, Brekken T, Brown A, Paasch R. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renewable Energy , 2010, 35(2): 348–354
doi: 10.1016/j.renene.2009.04.028
5 Agamloh E B, Wallace A K, von Jouanne A. A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system. Renewable Energy , 2008, 33(3): 520–529
doi: 10.1016/j.renene.2007.01.008
6 Polinder H, Damen M E C, Gardner F. Linear PM generator system for wave energy conversion in the AWS. Energy , 2004, 19(3): 583–589
7 Vantorre M, Banasiak R, Verhoeven R. Modelling of hydraulic performance and wave energy extraction by a point absorber in heave. Applied Ocean Research , 2004, 26(1): 61–72
doi: 10.1016/j.apor.2004.08.002
8 Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter. International Journal of Engineering Science , 2005, 43(17): 1377–1387
doi: 10.1016/j.ijengsci.2005.05.014
9 Bjarte-Larsson T, Flanes J. Laboratory experiment on heaving body with hydraulic power take-off and latching control. Ocean Engineering , 2006, 33(7): 847–877
doi: 10.1016/j.oceaneng.2005.07.007
10 Stallard T J, Weller S D, Stansby P K. Limiting heave response of a wave energy device by draft adjustment with upper surface immersion. Applied Ocean Research , 2009, 31(4): 282–289
doi: 10.1016/j.apor.2009.08.001
[1] Nagulan SANTHOSH,Venkatesan BASKARAN,Arunachalam AMARKARTHIK. A review on front end conversion in ocean wave energy converters[J]. Front. Energy, 2015, 9(3): 297-310.
[2] Srinivasan CHANDRASEKARAN, Arunachalam AMARKARTHIK, Karuppan SIVAKUMAR, Dhanasekaran SELVAMUTHUKUMARAN, Shaji SIDNEY. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion[J]. Front Energ, 2013, 7(3): 279-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed