Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (2) : 212-220    https://doi.org/10.1007/s11708-013-0284-4
RESEARCH ARTICLE
Power quality improvement using fuzzy logic controller for five-level shunt active power filter under distorted voltage conditions
Amar BENAISSA1,*(),Boualaga RABHI2,Ammar MOUSSI3
1. Department of Electrical Engineering, University of Djelfa, B.P.3117, Djelfa 17000, Algeria
2. SE Laboratory, University of Biskra, B.P.145, Biskra 07000, Algeria
3. ARHYS Laboratory, University of Biskra, B.P.145, Biskra 07000, Algeria
 Download: PDF(872 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a five-level inverter is used as a shunt active power filter (APF), taking advantages of the multilevel inverter such as low harmonic distortion and reduced switching losses. It is used to compensate reactive power and eliminate harmonics drawn from a thyristor rectifier feeding an inductive load (RL) under distorted voltage conditions. The APF control strategy is based on the use of self-tuning filters (STF) for reference current generation and a fuzzy logic current controller. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the α-β axis without phase locked loop (PLL). The MATLAB fuzzy logic toolbox is used for implementing the fuzzy logic control algorithm. The obtained results show that the proposed shunt APF controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the line voltage.

Keywords active power filter (APF)      harmonics isolator      distorted voltage conditions      self-tuning filters (STF)      fuzzy logic control     
Corresponding Author(s): Amar BENAISSA   
Issue Date: 19 May 2014
 Cite this article:   
Amar BENAISSA,Boualaga RABHI,Ammar MOUSSI. Power quality improvement using fuzzy logic controller for five-level shunt active power filter under distorted voltage conditions[J]. Front. Energy, 2014, 8(2): 212-220.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-013-0284-4
https://academic.hep.com.cn/fie/EN/Y2014/V8/I2/212
Fig.1  Power system configuration
kiTi1Ti2Ti3Ti4Ti5Ti6Ti7Ti8vio
111110000vdc/2
1/201111000vdc/4
0001111000
-1/200011110-vdc/4
-100001111-vdc/2
Tab.1  The five voltage values
Fig.2  STF tuned to the pulsation wc
Fig.3  Block diagram of STF-based harmonic isolator
Fig.4  
Output voltageTi1Ti2Ti3Ti4Ti5Ti6Ti7Ti8
vdc/211110000
vdc/401111000
000111100
-vdc/400011110
-vdc/200001111
Tab.2  Switching states of one five-level phase leg
Fig.5  PWM block diagram of current control
Fig.6  Fuzzy controller synoptic diagram
Fig.7  Structure of bridge balancing
ee
NLNMNSZEPSPMPL
NLNLNLNLNLNMNSZE
NMNLNLNLNMNSZEPS
NSNLNLNMNSZEPSPM
ZENLNMNSZEPSPMPL
PSNMNSZEPSPMPLPL
PMNSZEPSPMPLPLPL
PLNLNMNSZEPSPMPL
Tab.3  Fuzzy control rule table
Source4-Leg shunt APFLoad
System frequencySystem voltage(Rs,Ls)vdcC1, C2, C3, C4Switching frequency(Rf,Lf)(Rl, Ll), (Rd, Ld)Firing angle
60 Hz2302vmax?(0.5 mΩ, 0.015 mH)800 V60 mF5 kHz(5 mΩ, 0.068 mH)(1.2 mΩ, 0.05 mH), (0.5 Ω, 2 mH)30˚
Tab.4  Simulation parameters
Fig.8  Switching pulses of APF arms (T11, T15)
Fig.9  Supply voltage vsa waveform
Fig.10  Supply current isa waveform without filtering
Fig.11  Supply current isa waveform with filter
Fig.12  Power factor correction vsa, isa
Fig.13  Active filter current ifa
Fig.14  APF output voltage vab (line to line) for a five-level with PDPWM
Fig.15  DC voltage of the condensers vdc
Fig.16  DC voltage uc1
Fig.17  DC voltage uc2
Fig.18  DC voltage uc3
Fig.19  DC voltage uc4
1 AkagiH. Trend in active power line conditioners. IEEE Transactions on Power Electronics, 1994, 9(3): 263-268
doi: 10.1109/63.311258
2 ChiangH K, LinB R, YangK T, WuK W. Hybrid active power filter for power quality compensation. In: International Conference on Power Electronics and Drives Systems. Kuala Lumpur, Malaysia, 2005, 949-954
3 XuW F, LuoA, WangL N, TuC M. Development of hybrid active power filter using intelligent controller. Automation Electric Power Systems, 2003, 27(10): 49-52 (in Chinese)
4 VodyakhoO, KimT, KwakS. Three-level inverter based active power filter for the three-phase, four-wire system. In: IEEE Power Electronics Specialists Conference. Rhodes, Greece, 2008, 1874-1880
5 ChangG W, YehC M. Optimization-based strategy for shunt active power filter control under non-ideal supply voltages. IEE Electric Power Applications, 2005, 152(2): 182-190
doi: 10.1049/ip-epa:20045017
6 MonteroM, CadavalE R, GonzalezF. Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Transactions on Power Electronics, 2007, 22(1): 229-236
doi: 10.1109/TPEL.2006.886616
7 GreenT C, MarksJ H. Control techniques for active power filters. IEE Electric Power Applications, 2005, 152(2): 369-381
doi: 10.1049/ip-epa:20040759
8 AbdusalamM, PoureP, KarimiS, SaadateS. New digital reference current generation for shunt active power filter under distorted voltage conditions. Electric Power Systems Research, 2009, 79(5): 759-765
doi: 10.1016/j.epsr.2008.10.009
9 HamadiA, El-HaddadK, RahmaniS, KankanH. Comparison of fuzzy logic and proportional integral controller of voltage source active filter compensating current harmonics and power factor. In: IEEE International Conference on Industrial Technology (ICIT). Hammamet, Tunisia, 2004, 645-650
10 BhatA H, AgarwalP. A fuzzy logic controlled three-phase neutral point clamped bidirectional PFC rectifier. In: International Conference on Information and Communication Technology in Electrical Sciences (ICTES). Chennai, India, 2007, 238-244
11 SongH S. Control scheme for PWM converter and phase angle estimation algorithm under voltage unbalanced and/or sag condition. Dissertation for the Doctoral Degree. POSTECCH University, Republic of Korea (South), 2001
12 McGrathB P, HolmesD G. Multicarrier PWM strategies for multilevel inverters. IEEE Transactions on Industrial Electronics, 2002, 49(4): 858-867
doi: 10.1109/TIE.2002.801073
13 SaadS, ZelloumaL, HerousL. Comparison of fuzzy logic and proportional controller of shunt active filter compensating current harmonics and power factor. In: 2nd International Conference on Electrical Engineering Design and Technology ICEEDT08. Hammamet, Tunisia, 2008, 8-10
14 von JouanneADaiS, ZhangH, . A multilevel inverter approach providing DC-link balancing, ride-through enhancement, and common mode voltage elimination. IEEE Transactions on Industrial Electronics, 2002, 49(4): 739-745
doi: 10.1109/TIE.2002.801233
[1] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[2] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[3] Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE. Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment[J]. Front. Energy, 2015, 9(1): 7-21.
[4] Salim CHENNAI,M-T BENCHOUIA. Unified power quality conditioner based on a three-level NPC inverter using fuzzy control techniques for all voltage disturbances compensation[J]. Front. Energy, 2014, 8(2): 221-239.
[5] Manoj Kumar PANDA, Gopinath PILLAI, Vijay KUMAR. An interval type-2 fuzzy logic controller for TCSC to improve the damping of power system oscillations[J]. Front Energ, 2013, 7(3): 307-316.
[6] Ridha CHEIKH, Arezki MENACER, Said DRID, Mourad TIAR. Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed induction generator[J]. Front Energ, 2013, 7(1): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed