Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (3) : 335-344    https://doi.org/10.1007/s11708-014-0325-7
RESEARCH ARTICLE
Rapid transaction to load variations of active filter supplied by PV system
M. BENADJA(),S. SAAD(),A. BELHAMRA
Laboratoire Systèmes électromécaniques, Badji-Mokhtar Annaba University, B.P.12, Annaba 23000, Alegria
 Download: PDF(1314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper deals with the analysis and control of a photovoltaic (PV) system connected to the main supply through a Boost converter and shunt active filter supplied by a PV system providing continuous supply of nonlinear load in variation. A robust control of a PV system connected to the grid while feeding a variable nonlinear load is developed and highlighted. This development is based on the control of the Boost converter to extract the maximum power from the PV system using the Perturb and Observe (P and O) algorithm in the presence of temperature and illumination. The proposed modeling and control strategy provide power to the variable nonlinear load and facilitates the transfer of power from solar panel to the grid while improving the quality of energy (harmonic currents compensation, power factor compensation and dc bus voltage regulation). Validation of the developed model and control strategy is conducted using power system simulator Sim-Power System Blockset Matlab/Simulink. To demonstrate the effectiveness of the shunt active filter to load changes, the method of instantaneous power (pq theory) is used to identify harmonic currents. The obtained results show an accurate extraction of harmonic currents and perfect compensation of both reactive power and harmonic currents with a lower THD and in accordance with the IEEE-519 standard.

Keywords solar panels      maximum power point tracking (MPPT)      DC/DC converter (Boost)      shunt active filter      instantaneous power control      power quality      harmonics      imbalances      reactive energy     
Corresponding Author(s): M. BENADJA   
Issue Date: 10 September 2014
 Cite this article:   
M. BENADJA,S. SAAD,A. BELHAMRA. Rapid transaction to load variations of active filter supplied by PV system[J]. Front. Energy, 2014, 8(3): 335-344.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0325-7
https://academic.hep.com.cn/fie/EN/Y2014/V8/I3/335
Fig.1  System structure
Fig.2  PV cell equivalent circuit
Fig.3  Flowchart of the P and O algorithm
Fig.4  DC/DC (Boost) converter scheme
Fig.5  Control scheme of DC/DC (Boost) converter
Fig.6  Inverter control block diagram
Main source parametersLoad parametersFilter control parametersLines parametersBoost parametersPanel parameters
VrmsPh-Ph=208 VPhase= 0°Freq.=60 HzRch = 10 ? Lch= 10 mHlCapacity Cdc = 500 μFVdc = 500 VlPI controller for:DC voltage: Kp = 0.5Ki = 10Current: Kp = 1000Ki = 5lSource:Rsour=0.001?Lsour = 0.9 mHlLoad:Rload=0.001?Lload = 0.5 mHlFilter:Rfil=0.001?Lfil = 5 mHL=7 mHC = 2000 μFRp = 120 ?Rs = 0.05 ?Io = 1e-9Ns = 800Np = 150
Tab.1  System parameters
Fig.7  PV panel current and power characteristic according to voltage (I =f (V) and P=f (V))
Fig.8  Dynamic response of source voltages, source currents, variable nonlinear load currents, three phase active filter currents, DC bus voltage (Vdc) and Boost current
Fig.9  System power flow
Fig.10  Source current harmonic spectrum of phase a for FFT of three cycles
1 Khatod D K, Pant V, Sharma J. Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources. IEEE Transactions on Energy Conversion, 2010, 25(2): 535–545
doi: 10.1109/TEC.2009.2033881
2 Keyhani A, Marwali M N, Dai M. Integration of Green and Renewable Energy in Electric Power Systems. Wiley, 2009
3 Keyhani A.Design of Smart Power Grid Renewable Energy Systems. John Wiley & Son, Inc. and IEEE Publication, 2011
4 Tan Y K, Panda S K. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4424–4435
doi: 10.1109/TIE.2010.2102321
5 Guan X, Xu Z, Jia Q S. Energy-efficient buildings facilitated by microgrid. IEEE Transactions on Smart Grid, 2010, 1(3): 243–252
doi: 10.1109/TSG.2010.2083705
6 Chen Y, Smedley K. Three-phase Boost-type grid-connected inverter. IEEE Transactions on Power Electronics, 2008, 23(5): 2301–2309
doi: 10.1109/TPEL.2008.2003025
7 Mondol J D, Yohanis Y G, Norton B. Optimal sizing of array and inverter for grid-connected photovoltaic systems. Solar Energy, 2006, 80(12): 1517–1539
doi: 10.1016/j.solener.2006.01.006
8 Liu C, Chau K T, Zhang X. An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine. IEEE Transactions on Industrial Electronics, 2010, 57(3): 831–839
doi: 10.1109/TIE.2009.2022511
9 Chatterjee A, Keyhani A, Kapoor D. Identification of photovoltaic source models. IEEE Transactions on Energy Conversion, 2011, 26(3): 883–889
doi: 10.1109/TEC.2011.2159268
10 Yang D, Yin H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric and heat utilization. IEEE Transactions on Energy Conversion, 2011, 26(2): 662–670
doi: 10.1109/TEC.2011.2112363
11 de Brito M A G, Galotto L, Sampaio L P, de Azevedo e Melo G, Canesin C A. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1156–1167
doi: 10.1109/TIE.2012.2198036
12 Tsang K M, Chan W L. Three-level grid-connected photovoltaic inverter with maximum power point tracking. Energy Conversion and Management, 2013, 65: 221–227
doi: 10.1016/j.enconman.2012.08.008
13 Yang Y, Zhao F P. Adaptive perturb and observe MPPT technique for grid-connected photovoltaic inverters. Procedia Engineering, 2011, 23: 468–473
doi: 10.1016/j.proeng.2011.11.2532
14 Salas V, Alonso-Abella M, Chenlo F, Ol?as E. Analysis of the maximum power point tracking in the photovoltaic grid inverters of 5 kW. Renewable Energy, 2009, 34(11): 2366–2372
doi: 10.1016/j.renene.2009.03.012
15 Kanaan H Y, Sauriol G, Al-Haddad K. Small-signal modeling and linear control of a high efficiency dual boost single-phase power factor correction circuit. IET Power Electronics, 2009, 2(6): 665–674
doi: 10.1049/iet-pel.2008.0286
16 Mehran K, Giaouris D, Zahawi B. Stability analysis and control of nonlinear phenomena in boost converters using model-based Takagi-Sugeno fuzzy approach. IEEE Transactions on Circuits and Systems. I, Regular Papers, 2010, 57(1): 200–212
17 Oettmeier F M, Neely J, Pekarek S, DeCarlo R, Uthaichana K. MPC of switching in a boost converter using a hybrid state model with a sliding mode observer. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3453–3466
doi: 10.1109/TIE.2008.2006951
18 Czarnecki L S. Effect of supply voltage harmonics on IRP-based switching compensator control. IEEE Transactions on Power Electronics, 2009, 24(2): 483–488
doi: 10.1109/TPEL.2008.2009175
19 Salmeroìn P, Herrera R S, Vazquez J R. Mapping matrices against vectorial frame in the instantaneous reactive power compensation. IET Electric Power Application, 2007, 1(5): 727–736
doi: 10.1049/iet-epa:20060256
20 Herrera R S, Salmeron P, Kim H. Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results. IEEE Transactions on Industrial Electronics, 2008, 55(1): 184–196
doi: 10.1109/TIE.2007.905959
21 Saad S, Zellouma L. Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power. Electric Power Systems Research, 2009, 79(10): 1337–1341
doi: 10.1016/j.epsr.2009.04.003
[1] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[2] Illia DIAHOVCHENKO, Vitalii VOLOKHIN, Victoria KUROCHKINA, Michal ŠPES, Michal KOSTEREC. Effect of harmonic distortion on electric energy meters of different metrological principles[J]. Front. Energy, 2019, 13(2): 377-385.
[3] P. PADMAGIRISAN, V. SANKARANARAYANAN. Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle[J]. Front. Energy, 2019, 13(2): 296-306.
[4] Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ. Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system[J]. Front. Energy, 2017, 11(2): 155-167.
[5] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[6] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[7] Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
[8] Najet REBEI,Ali HMIDET,Rabiaa GAMMOUDI,Othman HASNAOUI. Implementation of photovoltaic water pumping system with MPPT controls[J]. Front. Energy, 2015, 9(2): 187-198.
[9] Ammar NEÇAIBIA,Samir LADACI,Abdelfatah CHAREF,Jean Jacques LOISEAU. Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels[J]. Front. Energy, 2015, 9(1): 43-53.
[10] Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN. A control scheme with performance prediction for a PV fed water pumping system[J]. Front. Energy, 2014, 8(4): 480-489.
[11] Akhil GUPTA,Saurabh CHANANA,Tilak THAKUR. THD reduction with reactive power compensation for fuzzy logic DVR based solar PV grid connected system[J]. Front. Energy, 2014, 8(4): 464-479.
[12] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
[13] Salim CHENNAI,M-T BENCHOUIA. Unified power quality conditioner based on a three-level NPC inverter using fuzzy control techniques for all voltage disturbances compensation[J]. Front. Energy, 2014, 8(2): 221-239.
[14] Amar BENAISSA,Boualaga RABHI,Ammar MOUSSI. Power quality improvement using fuzzy logic controller for five-level shunt active power filter under distorted voltage conditions[J]. Front. Energy, 2014, 8(2): 212-220.
[15] Akhil GUPTA,Saurabh CHANANA,Tilak THAKUR. Power quality investigation of a solar PV transformer-less grid- connected system fed DVR[J]. Front. Energy, 2014, 8(2): 240-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed