Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (3) : 362-370    https://doi.org/10.1007/s11708-015-0375-5
RESEARCH ARTICLE
Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture
Bayu PRABOWO1,Herri SUSANTO2,Kentaro UMEKI3,Mi YAN4,*(),Kunio YOSHIKAWA5
1. Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
3. Division of Energy Science, Luleå University of Technology, Luleå 971 87, Sweden
4. Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
5. Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
 Download: PDF(592 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper explored the feasibility and benefit of CO2 utilization as gasifying agent in the autothermal gasification process. The effects of CO2 injection on reaction temperature and producer gas composition were examined in a pilot scale downdraft gasifier by varying the CO2/C ratio from 0.6 to 1.6. O2 was injected at an equivalence ratio of approximately 0.33–0.38 for supplying heat through partial combustion. The results were also compared with those of air gasification. In general, the increase in CO2 injection resulted in the shift of combustion zone to the downstream of the gasifier. However, compared with that of air gasification, the long and distributed high temperature zones were obtained in CO2-O2 gasification with a CO2/C ratio of 0.6–1.2. The progress of the expected CO2 to CO conversion can be implied from the relatively insignificant decrease in CO fraction as the CO2/C ratio increased. The producer gas heating value of CO2-O2 gasification was consistently higher than that of air gasification. These results show the potential of CO2-O2 gasification for producing high quality producer gas in an efficient manner, and the necessity for more work to deeply imply the observation.

Keywords biomass gasification      CO2      downdraft gasifier      autothermal     
Corresponding Author(s): Mi YAN   
Online First Date: 26 August 2015    Issue Date: 11 September 2015
 Cite this article:   
Bayu PRABOWO,Herri SUSANTO,Kentaro UMEKI, et al. Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture[J]. Front. Energy, 2015, 9(3): 362-370.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0375-5
https://academic.hep.com.cn/fie/EN/Y2015/V9/I3/362
Proximate analysis/ (wt.%-d.b.) Ultimate analysis (wt.%-daf)
Volatile matter Fix carbon Ash C H O (by difference) N
83.9 13.3 2.8 49.3 5.5 45.0 0.2
Tab.1  Proximate and ultimate analysis of coconut shell
Fig.1  Gasification system
Fig.2  Detail of gasifier (cm)
Fig.3  Temperature evolution during experimental run
Fig.4  Producer gas evolution during experimental runs
Run No. Gasifying agent flow/(g·s-1) Biomass consumption/kg CO2/C ratio E/R Producer gasa
Composition/% (vol.)b Flow (NmL·s-1)
Air O2 CO2 H2 CO CH4 CO2
1 6.8 - - 13.4 - 0.39 6.1 23.2 1.4 5.6 8784.80
2 6.8 - - 14.4 - 0.36 5.5 21.4 1.1 4.7 8510.89
3 - 1.9 3.6 14.0 0.6 0.38 8.8 34.4 1.9 15.8 9257.85
4 - 1.9 5.6 15.2 0.8 0.35 10.9 34.0 1.6 17.9 7190.78
5 - 1.9 5.6 14.0 0.9 0.38 - - - - 9741.57
6 - 1.9 8.2 16.0 1.2 0.34 3.7 34.3 2.0 26.3 8368.83
7 - 1.9 9.2 16.2 1.6 0.33 3.7 31.3 1.4 30.7 9921.13
Tab.2  Experimental conditions and gas measurement results
Fig.5  Temperature profile at the measurement zone of 0, 150 and 300 mm from the inlet of gasifying agent
Fig.6  Effect of CO2/C ratio on producer gas composition
Fig.7  Effect of CO2/C ratio on combustible gas yield
Fig.8  Effect of CO2/C ratio on producer gas LHV and H2/CO ratio
1 Bridgwater A V. The technical and economic feasibility of biomass gasification for power generation. Fuel, 1995, 74(5): 631–653
https://doi.org/10.1016/0016-2361(95)00001-L
2 Wang T, Li Y, Ma L, Wu C. Biomass to dimethyl ether by gasification/synthesis technology—an alternative biofuel production route. Frontiers in Energy, 2011, 5(3): 330–339
3 Keche A J R, Amba Prasad Rao G. Experimental evaluation of a 35 kVA downdraft gasifier. Frontiers in Energy, 2013, 7(3): 300–306
https://doi.org/10.1007/s11708-013-0247-9
4 Ruiz J A, Juárez M C, Morales M P, Mu?oz P, Mendívil M A. Biomass gasification for electricity generation: review of current technology barriers. Renewable & Sustainable Energy Reviews, 2013, 18: 174–183
https://doi.org/10.1016/j.rser.2012.10.021
5 Simone M, Barontini F, Nicolella C, Tognotti L. Gasification of pelletized biomass in a pilot scale downdraft gasifier. Bioresource Technology, 2012(116): 403–412
6 Wang L, Weller C L, Jones D D, Hanna M A. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy, 2008, 32(7): 573–581
https://doi.org/10.1016/j.biombioe.2007.12.007
7 Huang Z, Zhang J, Yue G. Status of domestic gasification technology in China. Frontiers in Energy, 2009, 3(3): 330–336
8 Jarungthammachote S, Dutta A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management, 2008, 49(6): 1345–1356
https://doi.org/10.1016/j.enconman.2008.01.006
9 Umeki K, Yamamoto K, Namioka T, Yoshikawa K. High temperature steam-only gasification of woody biomass. Applied Energy, 2010, 87(3): 791–798
https://doi.org/10.1016/j.apenergy.2009.09.035
10 Yoon H C, Cooper T, Steinfeld A. Non-catalytic autothermal gasification of woody biomass. International Journal of Hydrogen Energy, 2011, 36(13): 7852–7860
https://doi.org/10.1016/j.ijhydene.2011.01.138
11 Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 2009, 35(2): 121–140
https://doi.org/10.1016/j.pecs.2008.08.001
12 Zhang W, Zhang Y. The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH4-CO2 reforming. Frontiers of Chemical Science and Engineering, 2010, 4(2): 147–152
https://doi.org/10.1007/s11705-009-0242-1
13 Gao S P, Zhao J T, Wang Z Q, Wang J F, Fang Y T, Huang J J. Effect of CO2 on pyrolysis behaviors of lignite. Journal of Fuel Chemistry and Technology, 2013, 41(3): 257–264
https://doi.org/10.1016/S1872-5813(13)60017-1
14 Gassner M, Maréchal F. Thermo-economic process model for thermochemical production of synthetic natural gas (SNG) from lignocellulosic biomass. Biomass and Bioenergy, 2009, 33(11): 1587–1604
https://doi.org/10.1016/j.biombioe.2009.08.004
15 Clausen L R, Elmegaard B, Houbak N. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 2010, 35(12): 4831–4842
https://doi.org/10.1016/j.energy.2010.09.004
16 van Vliet O P R, Faaij A P C, Turkenburg W C. Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Conversion and Management, 2009, 50(4): 855–876
https://doi.org/10.1016/j.enconman.2009.01.008
17 Hanaoka T, Hiasa S, Edashige Y. Syngas production by CO2/O2 gasification of aquatic biomass. Fuel Processing Technology, 2013, 116: 9–15
https://doi.org/10.1016/j.fuproc.2013.03.049
18 Ahmed I I, Gupta A K. Characteristics of cardboard and paper gasification with CO2. Applied Energy, 2009, 86(12): 2626–2634
https://doi.org/10.1016/j.apenergy.2009.04.002
19 Jaffri G R, Zhang J Y. Catalytic gasification of Fujian anthracite in CO2 with black liquor by thermo gravimetry. Journal of Fuel Chemistry and Technology, 2007, 35(2): 128–135
https://doi.org/10.1016/S1872-5813(07)60013-9
20 Kwon E E, Castaldi M J. Urban energy mining from municipal solid waste (MSW) via the enhanced thermo-chemical process by carbon dioxide CO2 as a reaction medium. Bioresource Technology, 2012, 125: 23–29
https://doi.org/10.1016/j.biortech.2012.08.073
21 Ahmed I I, Gupta A K. Kinetics of woodchips char gasification with steam and carbon dioxide. Applied Energy, 2011, 88(5): 1613–1619
https://doi.org/10.1016/j.apenergy.2010.11.007
22 Marquez-Montesinos F, Cordero T, Rodríguez-Mirasol J, Rodríguez J J. CO2 and steam gasification of a grapefruit skin char. Fuel, 2002, 81(4): 423–429
https://doi.org/10.1016/S0016-2361(01)00174-0
23 Renganathan T, Yadav M V, Pushpavanam S, Voolapalli R K, Cho Y S. CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis. Chemical Engineering Science, 2012, 83: 159–170
https://doi.org/10.1016/j.ces.2012.04.024
24 Poho?ely M, Jeremiá? M, Svoboda K, Kameníková P, Skoblia S, Beňo Z. CO2 as moderator for biomass gasification. Fuel, 2014, 117(Part A): 198–205
25 Prabowo B, Umeki K, Yan M, Nakamura M R, Castaldi M J, Yoshikawa K. CO2-steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: laboratory-scale experiments and performance prediction. Applied Energy, 2014, 113: 670–679
https://doi.org/10.1016/j.apenergy.2013.08.022
26 Svoboda K, Poho?ely M, Jeremiá? M, Kameníková P, Hartman M, Skoblja S, ?yc M. Fluidized bed gasification of coal-oil and coal-water-oil slurries by oxygen-steam and oxygen-CO2 mixtures. Fuel Processing Technology, 2012, 95: 16–26
https://doi.org/10.1016/j.fuproc.2011.11.001
27 Zhao Y C, Zhang J Y, Liu H T, Tian J L, Li Y, Zheng C G. Thermodynamic equilibrium study of mineral elements evaporation in O2/CO2 recycle combustion. Journal of Fuel Chemistry and Technology, 2006, 34(6): 641–650
https://doi.org/10.1016/S1872-5813(07)60001-2
28 Chen W, Thanapal S S, Annamalai K, Ansley R J, Mirik M. Updraft gasification of mesquite fuel using air/steam and CO2/O2 mixtures. Energy Fuels, 2013, 27 (12): 7460–7469
29 Pettinau A, Frau C, Ferrara F. Performance assessment of a fixed-bed gasification pilot plant for combined power generation and hydrogen production. Fuel Processing Technology, 2011, 92(10): 1946–1953
https://doi.org/10.1016/j.fuproc.2011.05.014
30 Riaza J, Gil M V, álvarez L, Pevida C, Pis J J, Rubiera F. Oxy-fuel combustion of coal and biomass blends. Energy, 2012, 41(1): 429–435
https://doi.org/10.1016/j.energy.2012.02.057
31 Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng C, Gupta R, Yamada T, Makino K, Yu J. An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research & Design, 2009, 87(8): 1003–1016
https://doi.org/10.1016/j.cherd.2009.02.005
[1] Sheng ZHOU, Maosheng DUAN, Zhiyi YUAN, Xunmin OU. Peak CO2 emission in the region dominated by coal use and heavy chemical industries: a case study of Dezhou city in China[J]. Front. Energy, 2020, 14(4): 740-758.
[2] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[3] Xiaoqian SONG, Yong GENG, Ke LI, Xi ZHANG, Fei WU, Hengyu PAN, Yiqing ZHANG. Does environmental infrastructure investment contribute to emissions reduction? A case of China[J]. Front. Energy, 2020, 14(1): 57-70.
[4] Haizhu WANG, Gensheng LI, Bin ZHU, Kamy SEPEHRNOORI, Lujie SHI, Yong ZHENG, Xiaomei SHI. Key problems and solutions in supercritical CO2 fracturing technology[J]. Front. Energy, 2019, 13(4): 667-672.
[5] Hailin WANG, Jiankun HE. China’s pre-2020 CO2 emission reduction potential and its influence[J]. Front. Energy, 2019, 13(3): 571-578.
[6] Harald SCHWARZ. Will Germany move into a situation with unsecured power supply?[J]. Front. Energy, 2019, 13(3): 551-570.
[7] Lakshmi PATHAK, Kavita SHAH. Renewable energy resources, policies and gaps in BRICS countries and the global impact[J]. Front. Energy, 2019, 13(3): 506-521.
[8] Lei ZHANG, Junqing ZHANG. Metal-organic frameworks for CO2 photoreduction[J]. Front. Energy, 2019, 13(2): 221-250.
[9] Haizhu WANG, Gensheng LI, Zhonghou SHEN, Zhenguo HE, Qingling LIU, Bin ZHU, Youwen WANG, Meng WANG. Expulsive force in the development of CO2 sequestration: application of SC-CO2 jet in oil and gas extraction[J]. Front. Energy, 2019, 13(1): 1-8.
[10] Junhyun CHO, Hyungki SHIN, Jongjae CHO, Young-Seok KANG, Ho-Sang RA, Chulwoo ROH, Beomjoon LEE, Gilbong LEE, Byunghui KIM, Young-Jin BAIK. Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions[J]. Front. Energy, 2017, 11(4): 452-460.
[11] Arun Kumar NANDA,C K PANIGRAHI. A state-of-the-art review of solar passive building system for heating or cooling purpose[J]. Front. Energy, 2016, 10(3): 347-354.
[12] Deepak KUMAR,D. K. MOHANTA,M. Jaya Bharata REDDY. Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission[J]. Front. Energy, 2015, 9(1): 91-105.
[13] Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
[14] Ertugrul YILDIRIM. Energy use, CO2 emission and foreign direct investment: Is there any inconsistence between causal relations?[J]. Front. Energy, 2014, 8(3): 269-278.
[15] Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU. Effect of Fe on NO release during char combustion in air and O2/CO2[J]. Front Energ, 2012, 6(2): 200-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed