Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (4) : 461-471    https://doi.org/10.1007/s11708-015-0377-3
RESEARCH ARTICLE
Higher heating value prediction of torrefaction char produced from non-woody biomass
Nitipong SOPONPONGPIPAT(),Dussadeeporn SITTIKUL,Unchana SAE-UENG
Department of Mechanical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
 Download: PDF(684 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The higher heating value of five types of non-woody biomass and their torrefaction char was predicted and compared with the experimental data obtained in this paper. The correlation proposed in this paper and the ones suggested by previous researches were used for prediction. For prediction using proximate analysis data, the mass fraction of fixed carbon and volatile matter had a strong effect on the higher heating value prediction of torrefaction char of non-woody biomass. The high ash fraction found in torrefied char resulted in a decrease in prediction accuracy. However, the prediction could be improved by taking into account the effect of ash fraction. The correlation developed in this paper gave a better prediction than the ones suggested by previous researches, and had an absolute average error (AAE) of 2.74% and an absolute bias error (ABE) of 0.52%. For prediction using elemental analysis data, the mass fraction of carbon, hydrogen, and oxygen had a strong effect on the higher heating value, while no relationship between the higher heating value and mass fractions of nitrogen and sulfur was discovered. The best correlation gave an AAE of 2.28% and an ABE of 1.36%.

Keywords higher heating value      correlation      biomass      proximate analysis      ultimate analysis     
Corresponding Author(s): Nitipong SOPONPONGPIPAT   
Online First Date: 12 October 2015    Issue Date: 04 November 2015
 Cite this article:   
Nitipong SOPONPONGPIPAT,Dussadeeporn SITTIKUL,Unchana SAE-UENG. Higher heating value prediction of torrefaction char produced from non-woody biomass[J]. Front. Energy, 2015, 9(4): 461-471.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0377-3
https://academic.hep.com.cn/fie/EN/Y2015/V9/I4/461
Biomass Species
Sugarcane leaves Saccharum spontaneum L.
Oil palm frond Elaeis quineensis
Rice straw Oryza sativa L.
Corncob Z. mays
Cassava rhizome M. esculenta
Tab.1  Biomass types and their species
Biomass Temperature /°C Torrefaction time/min Weight percentages (dry basis) HHVexp/(MJ·kg−1)
Ash VM FC C H N S O
Sugarcane leaves Raw 8.3±0.3 73.8±1.0 17.9±1.2 47.4 5.9 0.55 0.15 37.7 17.94±0.60
220 15 7.6±0.3 73.8±1.2 18.6±1.3 47.9 5.6 0.49 0.18 38.2 18.76±0.82
260 15 9.5±0.3 66.7±1.3 23.8±1.2 50.9 5.4 0.30 0.17 33.7 20.01±0.36
260 60 9.6±0.2 67.4±1.3 23.0±1.5 51.7 5.2 0.34 0.21 33 20.01±0.73
280 60 9.9±0.1 58.4±1.0 31.7±1.3 56.5 5.1 0.46 0.23 27.8 21.65±0.43
Oil palm frond Raw 4.0±0.2 79.1±1.5 16.9±1.4 44.8 5.5 0.31 0.12 45.3 18.21±0.79
220 60 4.5±0.3 70.8±1.1 24.7±1.5 52.7 5.6 0.26 0.07 36.9 20.20±0.29
260 15 5.0±0.4 66.4±1.4 28.6±1.3 55.2 5.2 0.27 0.08 34.2 21.21±0.47
260 35 5.4±0.1 63.5±1.3 31.1±1.5 56.4 4.9 0.32 0.07 32.9 21.95±0.32
260 60 5.6±0.3 61.0±1.1 33.4±1.4 58.4 5 0.36 0.07 30.6 22.48±0.45
280 60 6.4±0.1 53.0±1.4 40.6±1.6 63.2 4.7 0.35 0.08 25.3 24.41±0.50
Rice straw Raw 11.2±0.7 71.8±0.9 17.0±1.8 45.3 5.9 0.88 0.15 36.6 17.20±0.28
220 60 14.9±0.8 68.9±1.2 16.2±1.0 45.8 5.5 0.9 0.09 32.8 17.38±0.60
260 20 17.9±0.5 62.5±1.0 19.6±1.7 47.4 4.9 0.97 0.08 28.8 18.45±0.41
260 40 18.5±0.5 59.8±1.2 21.7±1.3 49.1 5.1 0.98 0.07 26.2 18.78±0.57
260 60 18.9±0.7 58.9±2.2 22.2±2.1 46.9 5 1.0 0.07 28.1 18.89±0.39
280 60 24.0±0.5 46.0±2.0 30.0±0.9 51.4 4.4 1.2 0.07 18.9 20.73±0.66
Cassava rhizome Raw 5.0±0.4 76.0±0.9 19.0±2.4 49.2 6.7 1.0 0.11 38.0 17.22±0.81
220 60 10.7±0.5 70.4±1.8 18.9±1.7 46.3 5.6 0.88 0.09 36.4 18.50±0.59
260 20 10.5±0.4 68.7±1.4 20.8±1.0 49.3 5.1 0.96 0.09 34.0 19.18±0.61
260 40 12.2±0.5 64.7±1.2 23.1±1.4 49.1 5.1 0.94 0.09 32.6 19.65±0.73
260 60 11.6±0.6 65.8±1.4 22.6±1.4 50.6 5.2 0.97 0.09 31.5 19.79±0.76
280 60 11.8±0.4 58.7±1.9 29.5±1.0 52.5 4.5 1.1 0.09 30.0 21.12±0.34
Corncob Raw 2.0±0.5 80.5±2.9 17.5±1.4 49.7 5.9 0.38 0.03 42.0 19.06±0.24
220 60 6.0±0.3 74.7±2.2 19.3±1.9 48.2 5.4 0.94 0.08 39.4 19.01±0.65
260 10 7.5±0.3 64.2±1.2 28.3±2.1 54.5 5.5 1.2 0.1 31.2 21.28±0.84
260 60 8.2±0.4 61.9±1.0 29.9±1.7 53.4 4.9 1.2 0.11 32.2 21.45±0.89
280 60 10.6±0.5 49.4±1.5 40.0±1.2 62.3 4.6 1.5 0.1 20.9 23.83±0.47
Tab.2  Data of various biomass and their torrefaction char
Correlation No. Equation Researchers R2 reported HHV unit Types of material
Correlations based on proximate analysis Eq. (1) HHV=354.3FC+170.08VM Cordero et al., 2001 [6] 0.999 kJ/kg Forest/agricultural wastes /char
Eq. (2) HHV=0.196FC+14.119 Demirbaş, 1997 [15] −0.647 MJ/kg Biomass
Eq. (3) HHV=0.3536FC+0.1559VM−0.0078Ash Parikh et al., 2007 [14] 0.942 MJ/kg Solid carbonaceous materials (Coals,lignite,manufactured fuel, biomass,MSW, biomass char)
Eq. (4) HHV=0.1905VM+0.2521FC Yin, 2011 [17] 0.995 MJ/kg Biomass
Eq. (5) HHV=19.288−0.2135VM/FC−1.9584Ash+0.0234FC/Ash Nhuchhen and Abdul Salam, 2012 [4] MJ/kg Biomass (by products of fruits, Agri-wastes,wood, grasses,leaves, fibrous materials)
Eq. (6) HHV=20.7999−0.3214VM/FC+0.0051(VM/FC)2−11.2277Ash/VM+4.4953(Ash/VM)2−0.7223(Ash/VM)3+0.0383(Ash/VM)4+0.0076FC/Ash Nhuchhen and Abdul Salam, 2012 [4] MJ/kg
Eq. (7) HHV=259.3(VM+FC)−2454.76 Thipkhunthod et al., 2005 [12] 0.899 kJ/kg Sewage sludge
Eq. (8) HHV=−3.0368+0.2218VM+0.2601FC Sheng and Azevedo, 2005 [1] 0.617 MJ/kg Biomass
Eq. (9) HHV=0.312FC+0.1534VM Demirbaş, 1997 [15] −0.306 MJ/kg Biomass
Eq. (10) HHV=19.914−0.2324Ash Sheng and Azevedo, 2005 [1] 0.625 MJ/kg Biomass
Eq. (11) HHV=−10.8141+0.3133(VM+FC) Jiménez and González, 1991 [13] 0.533 MJ/kg Lignocellulosic residues
Correlations based on ultimate analysis Eq. (12) HHV=0.3259C+3.4597 Sheng and Azevedo, 2005 [1] 0.758 MJ/kg Biomass
Eq. (13) HHV=3.55C2−232C−2230H+51.2C×H+131N+20600 Friedl et al., 2005 [2] 0.943 kJ/kg Biomass
Eq. (14) HHV=0.3491C+1.178H+0.1005S−0.1034O−0.015N−0.0211Ash Channiwala and Parikh, 2002 [18] 0.733 MJ/kg Gaseous and liquid fuels/coal/coke/biomass/refuse,MSW/animal waste
Eq. (15) HHV=0.4373C−1.6707 Tillman, 1978 [19] 0.666 MJ/kg Biomass/refuse
Eq. (16) HHV=0.2949C+0.825H Yin, 2011 [17] 0.997 MJ/kg Biomass
Eq. (17) HHV=−1.3675+0.3137C+0.7009H+0.0318O Sheng and Azevedo, 2005 [1] 0.834 MJ/kg Biomass
Eq. (18) HHV=−0.763+0.301C+0.525H+0.064O Jenkins and Ebeling, 1985 [8] 0.792 MJ/kg Biomass
Eq. (19) HHV=430.2C−186.7H−127.4N+178.6S+184.2O−2379.9 Thipkhunthod et al., 2005 [12] 0.905 kJ/kg Biomass
Tab.3  Details of correlations used for prediction
Fig.1  Comparison of experimental data and predicted result of HHV (The dashed lines show the range of AAE of±3.61%,±5.26%, and±6.08%, respectively)

(a) Using Eq. (1); (b) using Eq. (2); (c) using Eq. (3)

Fig.2  Comparison of experimental data and predicted result of HHV (The dashed lines show the range of AAE of±7.97% and±11.14%, respectively)

(a) Using Eq. (4); (b) using Eq. (9)

Correlations No. Equation Evaluation of error in this paper
AAE/% ABE/%
Correlations based on proximate analysis Eq.(1) HHV=354.3FC+170.08VM 3.61 −0.29
Eq.(2) HHV=0.196FC+14.119 5.26 −4.89
Eq.(3) HHV=0.3536FC+0.1559VM−0.0078Ash 6.08 −5.51
Eq.(4) HHV=0.1905VM+0.2521FC 7.97 −5.83
Eq.(5) HHV=19.288−0.2135VM/FC−1.9584Ash/VM+0.0234FC/Ash 8.19 −6.93
Eq.(6) HHV=20.7999−0.3214VM/FC+0.0051(VM/FC)2−11.2277Ash/VM+4.4953(Ash/VM)2−0.7223(Ash/VM)3+0.0383(Ash/VM)4+0.0076FC/Ash 9.12 −7.64
Eq.(7) HHV=259.3(VM+FC)−2454.76 9.43 −5.86
Eq.(8) HHV=−3.0368+0.2218VM+0.2601FC 10.85 −9.76
Eq.(9) HHV=0.312FC+0.1534VM 11.14 −10.98
Eq.(10) HHV=19.914−0.2324Ash 12.18 −11.03
Eq.(11) HHV=−10.8141+0.3133(VM+FC) 13.51 −12.07
Correlations based on ultimate analysis Eq.(12) HHV=0.3259C+3.4597 2.28 1.36
Eq.(13) HHV=3.55C2−232C−2230H+51.2C×H+131N+20600 2.76 1.60
Eq.(14) HHV=0.3491C+1.178H+0.1005S−0.1034O−0.015N−0.0211Ash 3.96 3.07
Eq.(15) HHV=0.4373C−1.6707 4.42 4.09
Eq.(16) HHV=0.2949C+0.825H 4.43 −2.03
Eq.(17) HHV=−1.3675+0.3137C+0.7009H+0.0318Oa 4.49 −2.12
Eq.(18) HHV=−0.763+0.301C+0.525H+0.064O 4.64 −1.67
Eq.(19) HHV=430.2C−186.7H−127.4N+178.6S+184.2O−2379.9 23.99 23.99
Tab.4  Error evaluation of HHV prediction of five non-woody biomass and their torrefaction char
Fig.3  Relationship between HHVexp and mass fraction of (a) FC; (b) VM; (c) ash
Fig.4  Comparison of predicted result using correlation developed in this paper and experimental data (The dashed lines show the range of AAE of±2.74% and±2.43%, respectively)

(a) Data conducted in this paper; (b) both data conducted in this paper and Cordero et al., 2001 [6]

No. Equation unita HHV unit Evaluation of error in this paper Data used for prediction
R2 AAE% ABE%
Eq.(27) HHV=35.4879−0.3023Ash −0.1905VM wt% MJ/kg 0.981 2.74 0.52 Proximate analysis data conducted in this paper
2.08 0.32 Proximate analysis data conducted by Cordero et al., 2001 [6]
2.43 −0.13 Both proximate analysis data conducted in this paper and conducted by Cordero et al., 2001 [6]
Tab.5  Prediction result of correlation developed in this paper (Correlation based on proximate analysis)
Fig.5  Relationship between the HHV and the mass fraction

(a) Mass fraction of carbon; (b) mass fraction of hydrogen; (c) mass fraction of oxygen; (d) mass fraction of nitrogen; (e) mass fraction of sulfur

1 Sheng  C, Azevedo  J L T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 2005, 28(5): 499–507
https://doi.org/10.1016/j.biombioe.2004.11.008
2 Friedl  A, Padouvas  E, Rotter  H, Varmuza  K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 2005, 544(1–2): 191–198
https://doi.org/10.1016/j.aca.2005.01.041
3 Shen  J, Zhu  S, Liu  X, Zhang  H, Tan  J. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management, 2010, 51(5): 983–987
https://doi.org/10.1016/j.enconman.2009.11.039
4 Nhuchhen  D R, Abdul Salam  P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63
https://doi.org/10.1016/j.fuel.2012.04.015
5 Akkaya  A V. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology, 2009, 90(2): 165–170
https://doi.org/10.1016/j.fuproc.2008.08.016
6 Cordero  T, Marquez  F, Rodriguez-Mirasol  J, Rodriguez  J J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 2001, 80(11): 1567–1571
https://doi.org/10.1016/S0016-2361(01)00034-5
7 Erol  M, Haykiri-Acma  H, Küçükbayrak  S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy, 2010, 35(1): 170–173
https://doi.org/10.1016/j.renene.2009.05.008
8 Jenkins  B M, Ebeling  J M. Correlation of physical and chemical properties of terrestrial biomass with conversion. In: Proceedings of Energy from Biomass and Wastes IX, Chicago, 1985, 371–400
9 Kathiravale  S, Muhd Yunus  M N, Sopian  K, Samsuddin  A H, Rahman  R A. Modeling the heating value of Municipal Solid Waste. Fuel, 2003, 82(9): 1119–1125
https://doi.org/10.1016/S0016-2361(03)00009-7
10 Callejón-Ferre  A J, Velázquez-Marti  B, López-Martínez  J A, Manzano-Agugliaro  F. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renewable  &  Sustainable  Energy  Reviews,  2011,  15(2):  948–955
https://doi.org/10.1016/j.rser.2010.11.012
11 Graboski  M, Bain  R. Properties of biomass relevant to gasification [Fuel gas production]. Biomass gasification—principles and technology, 1981, 41–69
12 Thipkhunthod  P, Meeyoo  V, Rangsunvigit  P, Kitiyanan  B, Siemanond  K, Rirksomboon  T. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel, 2005, 84(7–8): 849–857
https://doi.org/10.1016/j.fuel.2005.01.003
13 Jiménez  L, González  F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel, 1991, 70(8): 947–950
https://doi.org/10.1016/0016-2361(91)90049-G
14 Parikh  J, Channiwala  S A, Ghosal  G K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 2007, 86(12–13): 1710–1719
https://doi.org/10.1016/j.fuel.2006.12.029
15 Demirbaş  A. Calculation of higher heating values of biomass fuels. Fuel, 1997, 76(5): 431–434
https://doi.org/10.1016/S0016-2361(97)85520-2
16 Küçükbayrak  S, Dürüs  B, Meríçboyu  A E, Kadioġlu  E. Estimation of calorific values of Turkish lignites. Fuel, 1991, 70(8): 979–981
https://doi.org/10.1016/0016-2361(91)90054-E
17 Yin  C Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 2011, 90(3): 1128–1132
https://doi.org/10.1016/j.fuel.2010.11.031
18 Channiwala  S A, Parikh  P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002, 81(8): 1051–1063
https://doi.org/10.1016/S0016-2361(01)00131-4
19 Tillman  D. Wood as an energy resource. New York: Academic, 1978
20 Francis  H E, Lloyd  W G. Predicting heating value from elemental composition. Journal of Coal Quality, 1983, 2: 2
21 Bridgeman  T G, Jones  J M, Williams  A, Waldron  D J. An investigation of the grindability of two torrefied energy crops. Fuel, 2010, 89(12): 3911–3918
https://doi.org/10.1016/j.fuel.2010.06.043
22 Chen  W H, Cheng  W Y, Lu  K M, Huang  Y P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy, 2011, 88(11): 3636–3644
https://doi.org/10.1016/j.apenergy.2011.03.040
23 Medic  D, Darr  M, Shah  A, Potter  B, Zimmerman  J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel, 2012, 91(1): 147–154
https://doi.org/10.1016/j.fuel.2011.07.019
[1] Buqing YE, Rui ZHANG, Jin CAO, Bingquan SHI, Xun ZHOU, Dong LIU. Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system[J]. Front. Energy, 2020, 14(3): 590-606.
[2] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[3] Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR. Smart model for accurate estimation of solar radiation[J]. Front. Energy, 2020, 14(2): 383-399.
[4] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[5] Foued CHABANE,Noureddine MOUMMI,Abdelhafid BRIMA,Abdelhafid MOUMMI. Prediction of the theoretical and semi-empirical model of ambient temperature[J]. Front. Energy, 2016, 10(3): 268-276.
[6] Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI. A novel method for reliability and risk evaluation of wind energy conversion systems considering wind speed correlation[J]. Front. Energy, 2016, 10(1): 46-56.
[7] Bayu PRABOWO,Herri SUSANTO,Kentaro UMEKI,Mi YAN,Kunio YOSHIKAWA. Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture[J]. Front. Energy, 2015, 9(3): 362-370.
[8] Su LI,Weiguo ZHOU. Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator[J]. Front. Energy, 2014, 8(4): 443-448.
[9] Ashok Jayawant Rao KECHE, Gaddale AMBA PRASAD RAO. Experimental evaluation of a 35 kVA downdraft gasifier[J]. Front Energ, 2013, 7(3): 300-306.
[10] Tiejun WANG, Yuping LI, Longlong MA, Chuangzhi WU. Biomass to dimethyl ether by gasification/synthesis technologyan alternative biofuel production route[J]. Front Energ, 2011, 5(3): 330-339.
[11] Ben HUA. Correlation between carbon emissions and energy structure –Reliability analysis of low carbon target[J]. Front Energ Power Eng Chin, 2011, 5(2): 214-220.
[12] Xiangsong HOU, Shi YANG, Junfu LU, Hai ZHANG, Guangxi YUE. Effect of circulating ash from CFB boilers on NO and N2O emission[J]. Front Energ Power Eng Chin, 2009, 3(2): 241-246.
[13] ZHANG Xiaoyan, ZHANG Xingqun, CHEN Yunguang, YUAN Xiuling. Boiling heat transfer correlations for refrigerant mixtures flowing inside micro-fin tubes[J]. Front. Energy, 2008, 2(4): 489-493.
[14] LV Jing, FU Meng, QIN Na, DONG Bin. Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube[J]. Front. Energy, 2008, 2(3): 339-343.
[15] LIU Juanfang, ZENG Danling, LI Qin, GAO Hong. Molecular dynamics simulation of diffusivity[J]. Front. Energy, 2008, 2(3): 359-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed