Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (1) : 92-95    https://doi.org/10.1007/s11708-016-0432-8
RESEARCH ARTICLE
Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells
Haibin HUANG(), Gangyu TIAN, Tao WANG, Chao GAO, Jiren YUAN, Zhihao YUE, Lang ZHOU
Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Double-layer emitters with different doping concentrations (DLE) have been designed and prepared for amorphous silicon/crystalline silicon (α-Si:H/c-Si) heterojunction solar cells. Compared with the traditional single layer emitter, both the experiment and the simulation (AFORS-HET, http://www.paper.edu.cn/html/releasepaper/2014/04/282/) prove that the double-layer emitter increases the short circuit current of the cells significantly. Based on the quantum efficiency (QE) results and the current-voltage-temperature analysis, the mechanism for the experimental results above has been investigated. The possible reasons for the increased current include the enhancement of the QE in the short wavelength range, the increase of the tunneling probability of the current transport and the decrease of the activation energy of the emitter layers.

Keywords double-layer emitter      α-Si:H/c-Si heterojunction solar cell      short circuit current      quantum efficiency      current-voltage-temperature     
Corresponding Author(s): Haibin HUANG   
Just Accepted Date: 28 September 2016   Online First Date: 27 October 2016    Issue Date: 16 November 2016
 Cite this article:   
Haibin HUANG,Gangyu TIAN,Tao WANG, et al. Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 92-95.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-016-0432-8
https://academic.hep.com.cn/fie/EN/Y2017/V11/I1/92
Fig.1  Cross sections of a double layer emitter HJT solar cell and a conventional HJT solar cell
Fig.2  Sample of solar cell fabricated
NO N layer N + layer
SiH4 H2 PH3 SiH4 H2 PH3
SLE series 2/2 2 100 2 2 100
4/4 2 100 4 2 100 4
6/6 2 100 6 2 100 6
DLE series 1/4 2 100 1 2 100 4
1.5/4 2 100 1.5 2 100 4
1/6 2 100 1 2 100 6
Tab.1  Parameters of doped a-Si:H layers deposition
Fig.3  Light I-V curves of samples with a DLE or SLE structure
Fig.4  EQE curves of best cells with DLE and SLE, both in simulation and experiment
Fig.5  Ideal factor curves of samples with DLE and SLE in the range of 100 K to 300 K
Fig.6  E a curves of samples with DLE and SLE from IVT analysis
1 M Tanaka, M Taguchi, T Matsuyama, T Sawada, S Tsuda, S Nakano, H Hanafusa, Y Kuwano. Development of new α-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer). Japanese Journal of Applied Physics, 1992, 31(11): 3518–3522
2 T Sawada, N Terada, S Tsuge, T Baba, T Takahama, K Wakisaka, S Tsuda, S Nakano. High-efficiency α-Si/c-Si heterojunction solar cell. Conference Record of IEEE Phot. Spec. Conf., 1994, 2(2): 1219–1226
3 J Gifford. Panasonic hits 24.7% cell efficiency. 2013–04
4 F Wünsch, G Citarella, O Abdallah, M J Kunst. An inverted a-Si:H/c-Si hetero-junction for solar energy conversion. Journal of Non-Crystalline Solids, 2006, 352(9-20): 1962–1966
https://doi.org/10.1016/j.jnoncrysol.2006.01.034
5 J N Johnson, V Manivannan. Photovoltaic device which includes all-back-contact configuration and related fabrication process. US Patent: 2008/0000522 A1, 2008–01–03
6 A Terakawa, T Asaumi. Photovoltaic cell and method of fabricating the same. US Patent: 20050062041A1, 2005–03–24
7 L Zhang, H L Shen, Z H Yue, F Jiang, T R Wu, Y Y Pan. Effect of emitter layer doping concentration on the performance of silicon thin film heterojunction solar cell. Chinese Physics B, 2013, 22(1): 016803
https://doi.org/10.1088/1674-1056/22/1/016803
8 J G Fossum, F A Lindholm, C T Sah. Physics underlying improved efficiency of high-low-junction emittersilicon solar cells. International Electronic Devices Meeting, 1977, 23: 222–225
9 A Zouari, A B Arab. Effect of the front surface field on crystalline silicon solar cell efficiency. Renewable Energy, 2011, 36(6): 1663–1670
https://doi.org/10.1016/j.renene.2010.11.034
10 S Zhong, X Hua, W Shen. Simulation of high-efficiency crystalline silicon solar cells with homo–hetero junctions. IEEE Transactions on Electron Devices Year, 2013, 60(7): 2104–2110
https://doi.org/10.1109/TED.2013.2259830
11 H B Huang, J Gao, W R Fahrner, L Zhou. Theoretical analysis of the double-layer emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells. 2014
12 K Suzue, S N Mohammad, Z F Fan, W Kim, O Aktas, A E Botchkarev, H Morkoç. Electrical conduction in platinum-gallium nitride Schottky diodes. Journal of Applied Physics, 1996, 80(8): 4467–4478
https://doi.org/10.1063/1.363408
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed