Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (1) : 85-91    https://doi.org/10.1007/s11708-016-0437-3
RESEARCH ARTICLE
Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power
Lei ZHAO1,Wenbin ZHANG3,Jingwei CHEN2,Hongwei DIAO2,Qi WANG3(),Wenjing WANG1
1. Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
2. Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. GCL System Integration Technology Co. Ltd, Shanghai 201406, China
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage (Voc) of up to 0.732 V.

Keywords PECVD      high pressure and high power      a-Si:H microstructure      passivation      heterojunction solar cell     
Corresponding Author(s): Qi WANG   
Just Accepted Date: 19 October 2016   Online First Date: 09 November 2016    Issue Date: 16 November 2016
 Cite this article:   
Lei ZHAO,Wenbin ZHANG,Jingwei CHEN, et al. Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power[J]. Front. Energy, 2017, 11(1): 85-91.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-016-0437-3
https://academic.hep.com.cn/fie/EN/Y2017/V11/I1/85
Fig.1  Effective minority carrier lifetime ( τ eff ) and maximum limit of effective surface recombination velocity ( S eff, max ) obtained via a-Si:H passivation layers deposited at different conditions

(a) Deposition power is 300 W and deposition pressure is varied from 133 to 665 Pa; (b) deposition pressure is 399 Pa and deposition power is varied from 100 to 900 W

Fig.2  Raman spectra of the a-Si:H thin films deposited on the quartz substrates at different conditions

(a) Deposition power is 300 W and deposition pressure is varied from 133 to 665 Pa; (b) deposition pressure is 399 Pa and deposition power is varied from 100 W to 900 W

Fig.3  FTIR spectra of the a-Si:H thin films deposited on the c-Si substrates at different conditions

(a)Deposition power is 300 W and deposition pressure is varied from 133 to 665 Pa; (b) deposition pressure is 399 Pa and deposition power is varied from 100 to 900 W

Fig.4  Microstructure parameter (R*) of a-Si:H thin films obtained according to FTIR spectra
Fig.5  Representative transmission electron microscopy (TEM) photograph for obtained compact a-Si:H layer on c-Si substrate
Fig.6  Hydrogen content (CH) in a-Si:H films deposited at a pressure of 399 Pa with power varied from 100 to 900 W
Fig.7  Highest effective minority carrier lifetime (teff) achieved by optimized deposition condition at a relatively high pressure and high power
Fig.8  Light current-voltage (I-V) performance of optimized a-Si:H/c-Si heterojunction (SHJ) solar cell obtained on commercial 156 mm pseudo-square n-type Cz c-Si substrate
1 Taguchi M, Tanaka M, Matsuyama T, Matsuoka T, Tsuda S, Nakano S, Kishi Y, Kuwano Y. Improvement of the conversion efficiency of polycrystalline silicon thin film solar cell. In: Proceedings of Technical Digest of the 5th International Photovoltaic Science and Engineering Conference. Kyoto, Japan, 1990: 689–692
2 Scherg-Kurmes H, Körner S, Ring S, Klaus M, Korte L, Ruske F, Schlatmann R, Rech B, Szyszka B. High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and c-Si:H thin film solar cells. Thin Solid Films, 2015, 594: 316–322
https://doi.org/10.1016/j.tsf.2015.03.022
3 Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 2014, 4(1): 96–99
https://doi.org/10.1109/JPHOTOV.2013.2282737
4 de Wolf S, Descoeudres A, Holman Z C, Ballif C. High-efficiency silicon heterojunction solar cells: a review. Green, 2012, 2(1): 7– 24
https://doi.org/10.1515/green-2011-0018
5 Schulze T F, Korte L, Rech B. Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions. Thin Solid Films, 2012, 520(13): 4439–4444
https://doi.org/10.1016/j.tsf.2012.02.020
6 Wang Q, Page M R, Iwaniczko E, Xu Y Q, Roybal L, Bauer R, To B, Yuan H C, Duda A, Hasoon F, Yan Y F, Levi D, Meier D, Branz H M, Wang T H. Efficient heterojunction solar cells on p-type crystal silicon wafers. Applied Physics Letters, 2010, 96(1): 013507
https://doi.org/10.1063/1.3284650
7 Fesquet L, Olibet S, Vallat-Sauvain E, Shah A, Ballif C. High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiments. In: Proceedings of 23rd European Photovoltaic Solar Energy Conference and Exhibition. Valencia, Spain, 2008, 2: 2DV 2.14
8 Fujiwara H, Kaneko T, Kondo M. Optimization of interface structures in crystalline silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6-7): 725–728
https://doi.org/10.1016/j.solmat.2008.09.007
9 Kim S K, Lee J C, Park S J, Kim Y J, Yoon K H. Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell. Solar Energy Materials and Solar Cells, 2008, 92(3): 298–301
https://doi.org/10.1016/j.solmat.2007.09.007
10 Kim S, Dao V A, Shin C, Cho J, Lee Y, Balaji N, Ahn S, Kim Y, Yi J. Low defect interface study of intrinsic layer for c-Si surface passivation in a-Si:H/c-Si heterojunction solar cells. Thin Solid Films, 2012, 521: 45–49
https://doi.org/10.1016/j.tsf.2012.03.074
11 Lee S J, Kim S H, Kim D W, Kim K H, Kim B K, Jang J. Effect of hydrogen plasma passivation on performance of HIT solar cells. Solar Energy Materials and Solar Cells, 2011, 95(1): 81–83
https://doi.org/10.1016/j.solmat.2010.05.037
12 Zhao L, Diao H W, Zeng X B, Zhou C L, Li H L, Wang W J. Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures. Physica B: Condensed Matter, 2010, 405(1): 61–64
https://doi.org/10.1016/j.physb.2009.08.024
13 Meddeb H, Bearda T, Abdelraheem Y, Ezzaouia H, Gordon I, Szlufcik J, Poortmans J. Structural, hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (100) silicon surfaces. Journal of Physics D: Applied Physics, 2015, 48(41): 415301
https://doi.org/10.1088/0022-3727/48/41/415301
14 Zhang L P, Liu W Z, Guo W W, Bao J, Zhang X Y, Liu J N, Wang D L, Meng F Y, Liu Z X. Interface processing of amorphous-crystalline silicon heterojunction prior to the formation of amorphous-to-nanocrystalline transition phase. IEEE Journal of Photovoltaics, 2016, 6(3): 604–610
https://doi.org/10.1109/JPHOTOV.2016.2528404
15 Ge J, Ling Z P, Wong J, Stangl R, Aberle A G, Mueller T. Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy. Journal of Applied Physics, 2013, 113(23): 234310
https://doi.org/10.1063/1.4810900
16 Guo W W, Zhang L P, Bao J, Meng F Y, Liu J N, Wang D L, Bian J Y, Liu W Z, Feng Z Q, Verlinden P J, Liu Z X. Defining a parameter of plasma-enhanced CVD to characterize the effect of silicon-surface passivation in heterojunction solar cells. Japanese Journal of Applied Physics, 2015, 54(4): 041402
https://doi.org/10.7567/JJAP.54.041402
17 Geissbühler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C. Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments. Applied Physics Letters, 2013, 102(23): 231604
https://doi.org/10.1063/1.4811253
18 Deligiannis D, Marioleas V, Vasudevan R, Visser C C G, van Swaaij R A C M M, Zeman M. Understanding the thickness-dependent effective lifetime of crystalline silicon passivated with a thin layer of intrinsic hydrogenated amorphous silicon using a nanometer-accurate wet-etching method. Journal of Applied Physics, 2016, 119(23): 235307
https://doi.org/10.1063/1.4954069
19 De Wolf S. Intrinsic and doped a-Si:H/c-Si interface passivation. In: Physics and Technology of Amorphous-crystalline Heterostructure Silicon Solar Cells. Berlin: Springer-Verlag Berlin Heidelberg, 2012: 223–259<?Pub Caret?>
20 Sproul A B. Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. Journal of Applied Physics, 1994, 76(5): 2851–2854
https://doi.org/10.1063/1.357521
21 Beeman D, Tsu R, Thorpe M F. Structural information from the Raman spectrum of amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1985, 32(2): 874–878
https://doi.org/10.1103/PhysRevB.32.874
22 Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I. Raman study of the network disorder in sputtered and glow discharge a-Si:H films. Journal of Applied Physics, 1995, 78(8): 5120–5125
https://doi.org/10.1063/1.359743
23 Ouwens J D, Schropp R E I. Hydrogen microstructure in hydrogenated amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(24): 17759–17762
https://doi.org/10.1103/PhysRevB.54.17759
24 Guo W W, Zhang L P, Meng F Y, Bao J, Wang D L, Liu J N, Feng Z Q, Verlinden P J, Liu Z X. Study of the correlation between hydrogenated amorphous silicon microstructure and crystalline silicon surface passivation in heterojunction solar cells. Physica Status Solidi A: Applications and Materials Science, 2015, 212(10): 2233–2238
https://doi.org/10.1002/pssa.201532143
25 Langford A A, Fleet M L, Nelson B P, Lanford W A, Maley N. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1992, 45(23): 13367–13377
https://doi.org/10.1103/PhysRevB.45.13367
[1] Rui JIA,Ke TAO,Qiang LI,Xiaowan DAI,Hengchao SUN,Yun SUN,Zhi JIN,Xinyu LIU. Influence of using amorphous silicon stack as front heterojunction structure on performance of interdigitated back contact-heterojunction solar cell (IBC-HJ)[J]. Front. Energy, 2017, 11(1): 96-104.
[2] Alison WENHAM,Lihui SONG,Malcolm ABBOTT,Iskra ZAFIROVSKA,Sisi WANG,Brett HALLAM,Catherine CHAN,Allen BARNETT,Stuart WENHAM. Defect passivation on cast-mono crystalline screen-printed cells[J]. Front. Energy, 2017, 11(1): 60-66.
[3] Yanlin CHEN,Sihua ZHONG,Miao TAN,Wenzhong SHEN. SiO2 passivation layer grown by liquid phase deposition for silicon solar cell application[J]. Front. Energy, 2017, 11(1): 52-59.
[4] Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU. Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 92-95.
[5] Meng XIE,Changrui REN,Liming FU,Xiaodong QIU,Xuegong YU,Deren YANG. An industrial solution to light-induced degradation of crystalline silicon solar cells[J]. Front. Energy, 2017, 11(1): 67-71.
[6] Moonyong KIM,Phillip HAMER,Hongzhao LI,David PAYNE,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM. Impact of thermal processes on multi-crystalline silicon[J]. Front. Energy, 2017, 11(1): 32-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed