Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (1) : 86-98    https://doi.org/10.1007/s11708-017-0456-8
RESEARCH ARTICLE
Reactive power deployment and cost benefit analysis in DNO operated distribution electricity markets with D-STATCOM
Atma Ram GUPTA(), Ashwani KUMAR()
Department of Electrical Engineering, National Institute of Technology, Kurukshetra, India
 Download: PDF(1218 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this paper is to analyze unbalanced radial distribution systems (UBRDS) with the distribution static compensator (D-STATCOM). The main objectives of this paper are D-STATCOM allocation in UBRDS with an objective of providing reactive power support to enhance voltage profile and reduce line losses of the distribution network, determination of optimal D-STATCOM rating subjected to minimization of total cost, and impact of D-STATCOM placement on improving power factor and savings in cost of energy loss. The analysis is conducted on a large industrial load model with light, medium and high loading scenarios. Further, the impact of load growth is also considered for better planning of the power distribution system. The results are obtained on standard 25-bus UBRDS to check the feasibility of the proposed methodology.

Keywords unbalanced distribution system      D-STATCOM      voltage sensitivity index      load models      load growth      distribution network operator (DNO)     
Corresponding Author(s): Atma Ram GUPTA,Ashwani KUMAR   
Just Accepted Date: 12 January 2017   Online First Date: 21 February 2017    Issue Date: 20 March 2019
 Cite this article:   
Atma Ram GUPTA,Ashwani KUMAR. Reactive power deployment and cost benefit analysis in DNO operated distribution electricity markets with D-STATCOM[J]. Front. Energy, 2019, 13(1): 86-98.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0456-8
https://academic.hep.com.cn/fie/EN/Y2019/V13/I1/86
Fig.1  DNO operated competitive distribution power market
Fig.2  Three phase three wire unbalanced radial distribution circuit model
Fig.3  Equivalent circuit model of RDS
Fig.4  VSI profile for 25-bus UBRDS with large industrial motors
Fig.5  Flowchart for optimal D-STATCOM sizing
Fig.6  Cost analysis with placement D-STATCOM with rated load for 25-bus UBRDS
Fig.7  Cost analysis with D-STATCOM with load growth for 25-bus UBRDS
Base caseWith D-STATCOM
Ph-APh-BPh-CPh-APh-BPh-C
D-STATCOM rating (kvar)---------150150150
D-STATCOM location---15th bus
TPL/phase (kW)17.79818.75914.23714.52215.29911.529
TQL/phase (kvar)19.6818.01819.01616.21614.83915.606
TPL (kW)50.79441.35
TPL reduction (%)---------18.4018.4419.02
TQL (kVAr)56.71446.661
TQL reduction (%)---------17.6017.6417.93
Vmin (p.u) @ 12th bus0.958610.958480.963140.964910.964170.96913
M.V.R (%)4.1394.1523.6863.5093.5833.087
M.V.R reduction (%)---------15.2213.7016.25
Power factor0.8008440.8016860.7995070.8877710.8874930.886326
P load (kW)643.98649.98649.98
P i/p (kW)661.778668.739664.217658.502665.279661.509
Q load (kVAr)475.2480.6480
Q i/p (kVAr)494.88498.618499.016341.416345.439345.606
Total feeder
capacity (kVA)
826.3512834.1653830.7835741.7478749.6161746.3496
Released feeder
capacity (kVA)
---------84.6034484.5492484.43392
CEL ($)2669821569
D- STATCOM cost ($)---2386.8
Savings in cost of energy loss ($)---5129
Net saving ($)---2742.2
Tab.1  Results of Case 1 for 25-bus unbalanced radial distribution system
Base caseWith D-STATCOM
Ph-APh-BPh-CPh-APh-BPh-C
D-STATCOM rating (kvar)---------300300300
D-STATCOM location---15th bus
TPL/phase (kW)51.44254.05340.94741.24143.29932.512
TQL/phase (kvar)56.84151.94254.49645.80941.8943.659
TPL (kW)146.442117.052
TPL reduction (%)---------19.8319.8920.59
TQL (kvar)163.279131.358
TQL reduction (%)---------19.4019.3519.88
Vmin (p.u) @ 12th bus0.929510.929440.937470.942290.940940.94959
M.V.R (%)7.0497.0566.2535.7715.9065.041
M.V.R reduction (%)---------18.1302316.2981919.3827
Power factor0.7981960.8000240.7961390.9006290.900860.898971
P load (kW)1073.31083.31083.3
P i/p (kW)1124.7421137.3531124.2471114.5411126.5991115.812
Q load (kvar)792801800
Q i/p (kvar)848.841852.942854.496537.809542.89543.659
Total feeder
capacity (kVA)
1409.1051421.6481412.1241237.5141250.5821241.21
Released feeder
capacity (kVA)
---------171.5908171.0658170.9145
CEL ($)7696960770
D-STATCOM cost ($)---4773.6
Savings in cost of energy loss ($)---16199
Net savings ($)---1142.5
Tab.2  Results of Case 2 for 25-bus unbalanced radial distribution system
Base caseWith D-STATCOM
Ph-APh-BPh-CPh-APh-BPh-C
D-STATCOM rating (kvar)---------550550550
D-STATCOM location---15th bus
TPL/phase (kW)140.6146.93110.89111.74116.7186.981
TQL/phase (kvar)155.15141.31146.74123.21112.62115.57
TPL (kW)398.42315.431
TPL reduction (%)---------20.5220.5621.56
TQL (kvar)443.2351.4
TQL reduction (%)---------20.5820.3021.24
Vmin (p.u)0.883160.883420.897060.907090.904870.91968
M.V.R (%)11.68411.65810.2949.2919.5138.032
M.V.R reduction (%)---------20.48118.3993821.97397
Power factor0.7940270.79740.7909350.9086690.9097530.906925
P load (kW)1717.31733.31733.3
P i/p (kW)1857.91880.231844.191829.041850.011820.281
Q load (kvar)1267.21281.61280
Q i/p (kvar)1422.351422.911426.74840.41844.22845.57
Total feeder
capacity (kVA)
2339.8442357.9522331.6572012.8782033.532007.09
Released feeder
capacity (kVA)
---------326.9668324.422324.5666
CEL ($)209410162470
D-STATCOM cost ($)---8751.6
Savings in cost of energy loss ($)---46940
Net savings ($)---38188.4
Tab.3  Results of Case 3 for 25-bus unbalanced radial distribution system
Base caseWith D-STATCOM
Ph-APh-BPh-CPh-APh-BPh-C
D-STATCOM rating (kvar)---------700700700
D-STATCOM location---15th bus
TPL/phase (kW)217.57226.47170.43172.59179.67133.12
TQL/phase (kvar)239.85217.95224.71189.64173.29175.99
TPL (kW)614.47485.38
TPL reduction (%)---------20.6720.621.89
TQL (kvar)682.51538.92
TQL reduction (%)---------20.9320.4921.68
Vmin (p.u)0.85440.855040.872340.885260.882640.90148
M.V.R (%)14.5614.49612.76611.47411.7369.852
M.V.R reduction (%)---------21.1950519.0397422.82626
Power factor0.7914690.7957730.7877990.9097810.9114160.908076
P load (kW)2091.621112111
P i/p (kW)2309.172337.472281.432264.192290.672244.12
Q load (kvar)1543.41560.91559
Q i/p (kvar)1783.251778.851783.711033.041034.191034.99
Total feeder
capacity (kVA)
2917.5752937.3582895.9532488.722513.3082471.291
Released feeder
capacity (kVA)
---------428.8553424.05424.6621
CEL ($)322970248630
D-STATCOM cost ($)---11138
Savings in cost of energy loss ($)---74340
Net savings ($)---63202
Tab.4  Results of Case 4 for 25-bus unbalanced radial distribution system
Fig.8  Voltage profile for 25-bus UBRDS with large industrial motors at light load
Fig.9  Voltage profile for 25-bus UBRDS with large industrial motors at medium load
Fig.10  Voltage profile for 25-bus UBRDS with large industrial motors at high load
Fig.11  Voltage profile for 25-bus UBRDS with large industrial motors with load growth
Fig.12  Percentage loss reduction obtained after installation of D-STATCOM
1 H NNg, M M ASalama, A YChikhani. Classification of capacitor allocation techniques. IEEE Transactions on Power Delivery, 2000, 15(1): 387–392
https://doi.org/10.1109/61.847278
2 KBhattacharya, JZhong. Reactive power as an ancillary service. IEEE Transactions on Power Systems, 2001, 16(2): 294–300
https://doi.org/10.1109/59.918301
3 AGhafouri, AFereidunian, HLesani, HTorabi, PKharazmi. Performance evaluation for DNO governance using data envelopment analysis method. 2nd Iranian Conference on Smart Grids (ICSG), Tehran, Iran, 2012: 1–5
4 N HDandachi, M JRawlins, OAlsac, MPrais, OStott. OPF for reactive pricing studies on the NGC system. IEEE Transactions on Power Systems, 1996, 11(1): 226–232
https://doi.org/10.1109/59.486099
5 AGhosh, GLedwich. Power Quality Enhancement Using Custom Power Devices. London: Kluwer Academic Publishers, 2002
6 ZYang, CShen, M LCrow, LZhang. An improved STATCOM model for power flow analysis. Power Engineering Society Summer Meeting, 2000, 2(2): 1121–1126
7 PBapaiah. Power quality improvement by using D-STATCOM. International Journal of Emerging Trends in Electrical and Electronics, 2013, 2(4): 1–12
8 BSingh, S RArya. Design and control of a D-STATCOM for power quality improvement using cross correlation function approach. International Journal of Engineering Science and Technology, 2012, 4(1): 74–86
https://doi.org/10.4314/ijest.v4i1.9S
9 MHosseini, H AShayanfar. Modeling of series and shunt distribution FACTS devices in distribution systems load flow. Journal of Electrical Systems, 2008, 4(4): 1–22
10 P WSauer. A report on “Reactive Power Support Services in Electricity Markets”. Power Systems Engineering Research Center, Publication 00-08, May 2001
11 S M SHussain, NVisali. Identification of weak buses using voltage stability indicator and its voltage profile improvement by using D-STATCOM in radial distribution systems. IOSR Journal of Electrical and Electronics Engineering, 2012, 2(4): 17–23
https://doi.org/10.9790/1676-0241723
12 S MSuhail Hussain, MSubbaramiah. An analytical approach for optimal location of D-STATCOM in radial distribution system. IEEE International Conference on Energy Efficient Technologies for Sustainability (ICEETS), USA, 2013: 1365–1369
13 MFarhoodnea, AMohamed, HShareef, HZayandehroodi. Optimum D-STATCOM placement using firefly algorithm for power quality enhancement. IEEE 7th International Power Engineering and Optimization Conference (PEOCO), Langkawi Island, Malaysia, 2013: 98–102
14 S ATaher, S AAfsari. Optimal location and sizing of D-STATCOM in distribution systems by immune algorithm. Electrical Power and Energy Systems, 2014, 60: 34–44
https://doi.org/10.1016/j.ijepes.2014.02.020
15 SDevi, MGeethanjali. Optimal location and sizing determination of distributed generation and D-STATCOM using particle swarm optimization algorithm. Electrical Power and Energy Systems, 2014, 62: 562–570
https://doi.org/10.1016/j.ijepes.2014.05.015
16 TYuvaraj, KRavi, K RDevabalaji. D-STATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Engineering Journal, 2015
17 K RDevabalaji, KRavi. Optimal size and siting of multiple DG and D-STATCOM in radial distribution system using Bacterial Foraging Optimization Algorithm. Ain Shams Engineering Journal, 2015
18 TYuvaraj, K RDevabalaji, KRavi. Optimal placement and sizing of D-STATCOM using harmony search algorithm. Energy Procedia, 2015, 79: 759–765
https://doi.org/10.1016/j.egypro.2015.11.563
19 NKanwar, NGupta, K RNiazi, ASwarnkar. Improved cat swarm optimization for simultaneous allocation of D-STATCOM and DGs in distribution systems. Journal of Renewable Energy, 2015: 189080
20 A RGupta, AKumar. Energy savings using D-STATCOM placement in radial distribution system. Procedia Computer Science, 2015, 70: 558–564
https://doi.org/10.1016/j.procs.2015.10.100
21 JSanam, SGanguly, A KPanda. Placement of D-STATCOM in radial distribution systems for the compensation of reactive power. Smart Grid Technologies-Asia (ISGT ASIA), 2015
22 H BTolabi, M HAli, MRizwan. Simultaneous reconfiguration, optimal placement of D-STATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on Sustainable Energy, 2015, 6(1): 210–218
https://doi.org/10.1109/TSTE.2014.2364230
23 A RAbbasi, RKhoramini, BDehghan, MAbbasi, EKarimi. A new intelligent method for optimal allocation of D-STATCOM with uncertainty. Journal of Intelligent & Fuzzy Systems, 2015, 29(5): 1881–1888
https://doi.org/10.3233/IFS-151666
24 PShanmugasundaram, A RBabu. Application of D-STATCOM for loss minimization in radial distribution system. Proceedings of the International Conference on Soft Computing Systems, 2015, 397: 189–198
25 JMorin, FColas, XGuillaud, SGrenard, J YDieulot. Rules based voltage control for distribution networks combined with TSO-DSO reactive power exchanges limitations. Power Tech IEEE Eindhoven, 2015, 0(0): 1–6
https://doi.org/10.1109/PTC.2015.7232403
26 JGordijn, HAkkermans. Business models for distributed generation in a liberalized market environment. Electric Power Systems Research, 2007, 77(9): 1178–1188
https://doi.org/10.1016/j.epsr.2006.08.008
27 SAli, JMutale. Reactive power management at transmission/distribution interface. 50th International Universities Power Engineering Conference (UPEC), United Kingdom, 2015
28 SButler, M.LeachUK electricity networks—the nature of UK electricity transmission and distribution networks in an intermittent renewable and embedded electricity generation future. A report submitted in partial fulfillment of the requirements for the MSc and/or the DIC, 2001
29 V V S NMurty, AKumar. Capacitor allocation in unbalanced distribution system under unbalances and loading conditions. Energy Procedia, 2014, 54: 47–74
https://doi.org/10.1016/j.egypro.2014.07.248
30 V V S NMurty, AKumar. Optimal placement of DG in radial distribution systems based on new voltage stability index under load growth. International Journal of Electrical Power & Energy Systems, 2015, 69: 246–256
https://doi.org/10.1016/j.ijepes.2014.12.080
31 A KSharma, V V S NMurty. Analysis of mesh distribution systems considering load models and load growth impact with loops on system performance. Journal of the Institution of Engineers (India): Series B, 2014, 95(4): 295–318
32 GVulasala, SSirigiri, RThiruveedula. Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm. International Journal of Computer, Electrical, Automation. Control and Information Engineering, 2009, 3(4): 1050–1058
33 MATLAB version 7.8. The MATLAB by Mathworks Corporation, 2009
[1] Veera Venkata Satya Naryana MURTY, Ashwani KUMAR. Comparison of optimal capacitor placement methods in radial distribution system with load growth and ZIP load model[J]. Front Energ, 2013, 7(2): 197-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed