Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (3) : 310-317    https://doi.org/10.1007/s11708-017-0491-5
RESEARCH ARTICLE
Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction
Na SUN1, Minglei WANG1, Jinfa CHANG2, Junjie GE2(), Wei XING2(), Guangjie SHAO3
1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Laboratory of Advanced Power Sources, Changchun 130022, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Laboratory of Advanced Power Sources, Changchun 130022, China
3. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
 Download: PDF(485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the formic acid electro-oxidation (FAEO). The results indicate that the different nitrogen doping contents in Pd/N-C catalysts have a significant effect on the performance of FAEO. A higher N content facilitates the uniform dispersion of Pd nanoparticles on carbon black with narrow particle size distribution. Furthermore, the electrochemical results show that the catalyst with a higher N-doping content possesses a higher catalytic activity and a long-term stability for FAEO. The peak current density of the Pd/N-C (high) catalyst is 1.27 and 2.31 times that of the Pd/N-C (low) and homemade Pd/C-H catalyst. The present paper may provide a simple method for preparation of high-performance anode catalyst for direct formic acid fuel cells (DFAFCs).

Keywords formic acid electro-oxidation      nitrogen doped      oxidized carbon      nitrogen content     
Corresponding Author(s): Junjie GE,Wei XING   
Online First Date: 22 August 2017    Issue Date: 07 September 2017
 Cite this article:   
Na SUN,Minglei WANG,Jinfa CHANG, et al. Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction[J]. Front. Energy, 2017, 11(3): 310-317.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0491-5
https://academic.hep.com.cn/fie/EN/Y2017/V11/I3/310
Fig.1  Structure characterization of all catalysts
Fig.2  TEM images and the size distribution
Fig.3  Estimation of electrochemical surface area for all catalysts
Fig.4  CVs for the oxidation of preadsorbed CO
Fig.5  Cyclic voltammograms of Pd/N-C (high), Pd/N-C (low), Pd/C-H and (d) Pd/O-C catalysts in 0.5 mol/L H2SO4 containing 0.5 mol/L HCOOH solution with a scan rate of 50 mV/s at 25°C
Fig.6  Formic acid oxidation performances of all catalysts
1 Rice C, Haa  S, Masela R I ,  Wieckowski A . Catalysts for direct formic acid fuel cells. Journal of Power Sources, 2003, 115(2): 229–235 
https://doi.org/10.1016/S0378-7753(03)00026-0
2 Wang J, Liu  Y, Okada T . Novel platinum-macrocycle composite catalysts for direct formic acid fuel cells. Journal of Applied Electrochemistry, 2016, 46(8): 901–905 
https://doi.org/10.1007/s10800-016-0975-8
3 Yu X, Pickup  P G. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources, 2008, 182(1): 124–132 
https://doi.org/10.1016/j.jpowsour.2008.03.075
4 Antolini E. Palladium in fuel cell catalysis. Energy & Environmental Science, 2009, 2(9): 915–931 
https://doi.org/10.1039/b820837a
5 El-Nagar G A, Darweesh  A F, Sadiek  I. A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochimica Acta, 2016, 215: 334–338 
https://doi.org/10.1016/j.electacta.2016.08.127
6 Feng L, Yao  S, Zhao X ,  Yan L, Liu  C, Xing W . Electrocatalytic properties of Pd/C catalyst for formic acid electrooxidation promoted by europium oxide. Journal of Power Sources, 2012, 197: 38–43 
https://doi.org/10.1016/j.jpowsour.2011.09.030
7 Xiong B, Zhou  Y, Zhao Y ,  Wang J, Chen  X, O’Hayre R ,  Shao Z. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52: 181–192 
https://doi.org/10.1016/j.carbon.2012.09.019
8 Liang J, Hassan  M, Zhu D ,  Guo L, Bo  X. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 490: 576–586 
https://doi.org/10.1016/j.jcis.2016.11.101
9 Liu D, Li  L, You T . Superior catalytic performances of platinum nanoparticles loaded nitrogen-doped graphene toward methanol oxidation and hydrogen evolution reaction. Journal of Colloid and Interface Science, 2017, 487: 330–335 
https://doi.org/10.1016/j.jcis.2016.10.038
10 Ramakrishna S U B ,  Srinivasulu Reddy D ,  Shiva Kumar S ,  Himabindu V . Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy, 2016, 41(45): 20447–20454 
https://doi.org/10.1016/j.ijhydene.2016.08.195
11 Xiong Q, Chi  H, Zhang J ,  Tu J. Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 688, Part B: 729–735
12 Xu G, Dou  H, Geng X ,  Han J, Chen  L, Zhu H . Free standing three-dimensional nitrogen-doped carbon nanowire array for high-performance supercapacitors. Chemical Engineering Journal, 2017, 308: 222–228 
https://doi.org/10.1016/j.cej.2016.09.060
13 Xu J, Ju  Z, Cao J ,  Wang W, Wang  C, Chen Z . Microwave synthesis of nitrogen-doped mesoporous carbon/nickel-cobalt hydroxide microspheres for high-performance supercapacitors. Journal of Alloys and Compounds, 2016, 689: 489–499 
https://doi.org/10.1016/j.jallcom.2016.08.006
14 Zhang Y, Chen  L, Meng Y ,  Xie J, Guo  Y, Xiao D . Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. Journal of Power Sources, 2016, 335: 20–30 
https://doi.org/10.1016/j.jpowsour.2016.08.096
15 Wu G, Zelenay  P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Accounts of Chemical Research, 2013, 46(8): 1878–1889 
https://doi.org/10.1021/ar400011z
16 Matter P H, Zhang  L, Ozkan U S . The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96 
https://doi.org/10.1016/j.jcat.2006.01.022
17 Bae G, Youn  D H, Han  S, Lee J S . The role of nitrogen in a carbon support on the increased activity and stability of a Pt catalyst in electrochemical hydrogen oxidation. Carbon, 2013, 51: 274–281 
https://doi.org/10.1016/j.carbon.2012.08.054
18 Chang J, Sun  X, Feng L ,  Xing W, Qin  X, Shao G . Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. Journal of Power Sources, 2013, 239: 94–102 
https://doi.org/10.1016/j.jpowsour.2013.03.066
19 Xiao M, Zhu  J, Ge J ,  Liu C, Xing  W. The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes. Journal of Power Sources, 2015, 281: 34–43 
https://doi.org/10.1016/j.jpowsour.2015.01.169
20 Ham D J, Pak  C, Bae G H ,  Han S, Kwon  K, Jin S A ,  Chang H ,  Choi S H ,  Lee J S . Palladium-nickel alloys loaded on tungsten carbide as platinum-free anode electrocatalysts for polymer electrolyte membrane fuel cells. Chemical Communications, 2011, 47(20): 5792–5794 
https://doi.org/10.1039/c0cc03736b
21 Kawaguchi T, Sugimoto  W, Murakami Y ,  Takasu Y . Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu. Electrochemistry Communications, 2004, 6(5): 480–483 
https://doi.org/10.1016/j.elecom.2003.03.001
22 Zhang J F, Xu  Y, Zhang B . Facile synthesis of 3D Pd-P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chemical Communications, 2014, 50(88): 13451–13453 
https://doi.org/10.1039/C4CC03282A
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed