Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (3) : 245-253    https://doi.org/10.1007/s11708-017-0492-4
RESEARCH ARTICLE
A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application
Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI()
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
 Download: PDF(362 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High activity catalyst with simple low-cost synthesis is essential for fuel cell commercialization. In this study, a facile procedure for the synthesis of cube-like Pt nanoparticle (PtCube) composites with high surface area carbon supports is developed by mixing precursor of Pt with carbon supports in organic batches, hence, one pot synthesis. The PtCube grow with Vulcan XC-72 or Ketjen black, respectively, and then treated for 5.5 h at 185ºC (i.e., PtCube5.5/V and PtCube5.5/K). The resulting particle sizes and shapes are similar; however, PtCube5.5/K has a larger electrochemical active surface area (EASA) and a remarkably better formic acid (FA) oxidation performance. Optimization of the PtCube/K composites leads to PtCube10/K that has been treated for 10 h at 185ºC. With a larger EASA, PtCube10/K is also more active in FA oxidation than the other PtCube/K composites. Impedance spectroscopy analysis of the temperature treated and as-prepared (i.e., untreated) PtCube/K composites indicates that PtCube10/K is less resistive, and has the highest limiting capacitance among the PtCube/K electrodes. Consistently, the voltammetric EASA is the largest for PtCube10/K. Furthermore, PtCube10/K is compared with two commercial Pt/C catalysts, Tanaka Kikinzoku Kogyo (TKK), and Johnson Matthey (JM)Pt/C catalysts. The TKK Pt/C has a higher EASA than PtCube10/K, as expected from their relative particles sizes (3–4 nm vs. 6–7 nm for PtCube10/K), however, PtCube10/K has a significantly better FA oxidation activity.

Keywords synthesis      cube-like Pt      Pt/C composite      catalyst      impedance     
Corresponding Author(s): Xianguo LI   
Just Accepted Date: 12 July 2017   Online First Date: 22 August 2017    Issue Date: 07 September 2017
 Cite this article:   
Reza B. MOGHADDAM,Samaneh SHAHGALDI,Xianguo LI. A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application[J]. Front. Energy, 2017, 11(3): 245-253.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0492-4
https://academic.hep.com.cn/fie/EN/Y2017/V11/I3/245
Fig.1  Transmission electron microscopic images of pure PtCube (A), PtCube5.5/V(B, C), PtCube5.5/K(D, E), PtCube10/K(F, G), and PtCube24/K (H) composites, and a TKK Pt/C (I)
Fig.2  Cyclic voltammograms of the PtCube5.5/V and PtCube5.5/K composites at 50 mV/s in 0.5 mol/L H2SO4
Fig.3  Voltammetric responses for the PtCube/K composites at 50 mV/s in 0.5 mol/L H2SO4
Catalyst EASA/(cm 2·g−1)
H Des/ mC H Ads/mC
Pt Cube/V 5.61×10 −2 5.33×10 −2
49.6 45.7
PtCube5.5/K 9.12×10 −2 9.33×10 −2
78.7 80.5
Pt Cube10/K 10.87×10 −2 11.71×10 −2
95.2 102.5
Pt Cube24/K 3.44×10 −2 3.81×10 −2
29.3 32.9
Tab.1  Electrochemical active surface area (EASA) values for PtCube/V and PtCube/K composites based upon the H adsorption and desorption signals
Fig.4  Complex-plane impedance (Nyquist profiles) responses of the PtCube/K composites at 0.15 VSCE over 100 kHz to 0.1 Hz. Symbols are experimental and dashed lines are simulation results. Inset: series capacitance plots (the data for the PtCube5.5/V is also included), and the equivalent circuit used to model the impedance data
Fig.5  Voltammograms (50 mV/s) for the Pt/C (TKK; 46.6%), JM (60%), and PtCube10/K catalysts (Pt loading ~7.7×10−6 g/cm2) in 0.5 mol/L H2SO4
Catalyst RCT CPE DL/S.s a1 a1 * CDL/µF WR CSeries/mF
Pt Cube5.5/K 10.5 3.1×10 −7 0.90 0.089 0.11 0.22
Pt Cube10/K 6.5 1.0×10 −7 0.99 0.098 0.09 0.36
Pt Cube24/K 10.0 1.2×10 −7 0.98 0.090 0.11 0.18
Tab.2  Numerical values for the high frequency RC semicircle and the mid frequency Warburg resistance of the PtCube/K composites
Fig.6  Voltammograms (10 mV/s) for the PtCube5.5/V, PtCube5.5/K, PtCube10/K, PtCube24/K, JMPt/C (60%), and Pt/C (TKK; 46.6%) catalysts (Pt loading ~7.7×10−5 g/cm2) in 0.5 mol/L H2SO4 containing 0.5 mol/L formic acid. Raw data (a) and EASA normalized data (b)
Fig.7  EASA-normalized potentiostatic (E= 0.2 VSCE) formic acid oxidation at PtCube/K and TKK Pt/C in 0.5 mol/L H2SO4 containing 0.5 mol/L FA
1 LaMer V K, Dinegar  R H. Theory, Production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society, 1950, 72(11): 4847–4854 
https://doi.org/10.1021/ja01167a001
2 Pajonk G M, Rao  A V, Pinto  N, Ehrburger-Dolle F ,  Gil M B . Monolithic carbon aerogels for fuel cell electrodes. In: Delmon P A J R M J A M P G B, Poncelet G. eds. Studies in Surface Science and Catalysis. Elsevier, 1998: 167–174
3 Wang C, Hou  Y, Kim J ,  Sun S. A general strategy for synthesizing fept nanowires and nanorods. Angewandte Chemie International Edition, 2007, 46(33): 6333–6335 
https://doi.org/10.1002/anie.200702001
4 Wang C, Daimon  H, Onodera T ,  Koda T, Sun  S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angewandte Chemie International Edition, 2008, 47(19): 3588–3591
https://doi.org/10.1002/anie.200800073
5 Antolini E. Composite materials: an emerging class of fuel cell catalyst supports. Applied Catalysis B: Environmental, 2010, 100(3–4): 413–426 
https://doi.org/10.1016/j.apcatb.2010.08.025
6 Lee Y W, Han  S B, Kim  D Y, Park  K W. Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation. Chemical Communications, 2011, 47(22): 6296–6298 
https://doi.org/10.1039/c1cc10798d
7 Du L, Shao  Y, Sun J ,  Yin G, Liu  J, Wang Y . Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy, 2016, 29: 314–322 
https://doi.org/10.1016/j.nanoen.2016.03.016
8 Fu K, Wang  Y, Mao L ,  Jin J, Yang  S, Li G . Facile one-pot synthesis of graphene-porous carbon nanofibers hybrid support for Pt nanoparticles with high activity towards oxygen reduction. Electrochimica Acta, 2016, 215: 427–434 
https://doi.org/10.1016/j.electacta.2016.08.111
9 Li Q, Sun  S. Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy, 2016, 29: 178–197 
https://doi.org/10.1016/j.nanoen.2016.02.030
10 Zhang J. Recent advances in cathode electrocatalysts for PEM fuel cells. Frontiers in Energy, 2011, 5(2): 137–148 
https://doi.org/10.1007/s11708-011-0153-y
11 Job N, Pereira  M F R, Lambert  S, Cabiac A ,  Delahay G ,  Colomer J F ,  Marien J ,  Figueiredo J L ,  Pirard J P . Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. Journal of Catalysis, 2006, 240(2): 160–171
https://doi.org/ 10.1016/j.jcat.2006.03.016
12 Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 1–24 
https://doi.org/10.1016/j.apcatb.2008.09.030
13 Antolini E. Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Applied Catalysis B: Environmental, 2016, 181: 298–313
https://doi.org/10.1016/j.apcatb.2015.08.007
14 Antolini E. Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renewable & Sustainable Energy Reviews, 2016, 58: 34–51
https://doi.org/ 10.1016/j.rser.2015.12.330
15 Cherstiouk O V ,  Simonov A N ,  Moseva N S ,  Cherepanova S V ,  Simonov P A ,  Zaikovskii V I ,  Savinova E R . Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochimica Acta, 2010, 55(28): 8453–8460
https://doi.org/ 10.1016/j.electacta.2010.07.047
16 Li D, Wang  C, Tripkovic D ,  Sun S, Markovic  N M, Stamenkovic  V R. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catalysis, 2012, 2(7): 1358–1362
https://doi.org/10.1021/cs300219j
17 Wang X M, Wang  M E, Zhou  D D, Xia  Y Y. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation. Physical Chemistry Chemical Physics, 2011, 13(30): 13594–13597
https://doi.org/ 10.1039/c1cp21680e
18 Antolini E, Gonzalez  E R. Polymer supports for low-temperature fuel cell catalysts. Applied Catalysis A, General, 2009, 365(1): 1–19
https://doi.org/ 10.1016/j.apcata.2009.05.045
19 Moghaddam R B ,  Ali O Y ,  Javashi M ,  Warburton P L ,  Pickup P G . The effects of conducting polymers on formic acid oxidation at Pt nanoparticles. Electrochimica Acta, 2015, 162: 230–236 
https://doi.org/10.1016/j.electacta.2014.08.029
20 Ochal P, Gomez de la Fuente  J L, Tsypkin  M, Seland F ,  Sunde S ,  Muthuswamy N ,  Rønning M ,  Chen D, Garcia  S, Alayoglu S ,  Eichhorn B . CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. Journal of Electroanalytical Chemistry, 2011, 655(2): 140–146 
https://doi.org/10.1016/j.jelechem.2011.02.027
21 Guo K, Wang  Y, Chen H ,  Ji J, Zhang  S, Kong J ,  Liu B.An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction. Electrochemistry Communications, 2011, 13(7): 707–710 
https://doi.org/10.1016/j.elecom.2011.04.016
22 Alipour Moghadam Esfahani R ,  Vankova S K ,  Monteverde Videla A H A ,  Specchia S . Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 201: 419–429 
https://doi.org/10.1016/j.apcatb.2016.08.041
23 Su N, Hu  X, Zhang J ,  Huang H ,  Cheng J ,  Yu J, Ge  C. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation. Applied Surface Science, 2017, 399: 403–410
https://doi.org/10.1016/j.apsusc.2016.12.095
24 Yuan Q, Duan  D, Ma Y ,  Wei G, Zhang  Z, Hao X ,  Liu S. Performance of nano-nickel core wrapped with Pt crystalline thin film for methanol electro-oxidation. Journal of Power Sources, 2014, 245: 886–891 
https://doi.org/10.1016/j.jpowsour.2013.07.039
25 Wang Y J, Fang  B, Li H ,  Bi X T ,  Wang H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Progress in Materials Science, 2016, 82: 445–498
https://doi.org/10.1016/j.pmatsci.2016.06.002
26 Shahgaldi S, Hamelin  J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015, 94: 705–728 
https://doi.org/10.1016/j.carbon.2015.07.055
27 Prabakar S J R ,  Kim Y, Jeong  J, Jeong S ,  Lah M S ,  Pyo M. Graphite oxide as an efficient and robust support for Pt nanoparticles in electrocatalytic methanol oxidation. Electrochimica Acta, 2016, 188: 472–479
https://doi.org/10.1016/j.electacta.2015.12.051
28 Luo M, Hong  Y, Yao W ,  Huang C ,  Xu Q, Wu  Q. Facile removal of polyvinylpyrrolidone (PVP) adsorbates from Pt alloy nanoparticles. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(6): 2770–2775
https://doi.org/10.1039/C4TA05250A
29 Niu Z, Li  Y. Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials, 2014, 26(1): 72–83 
https://doi.org/10.1021/cm4022479
30 Biegler T, Rand  D A J, Woods  R. Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorptionOriginal. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(2): 269–277 
https://doi.org/10.1016/S0022-0728(71)80089-X
31 Trasatti S, Petrii  O A. Real surface area measurements in electrochemistry. Journal of Electroanalytical Chemistry, 1992, 327(1-2): 353–376 
https://doi.org/10.1016/0022-0728(92)80162-W
32 Reid O R, Saleh  F S, Easton  E B. Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochimica Acta, 2013, 114: 278–284
https://doi.org/ 10.1016/j.electacta.2013.10.050
33 Wang W, Guo  S, Lee I ,  Ahmed K ,  Zhong J ,  Favors Z ,  Zaera F ,  Ozkan M ,  Ozkan C S . Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports, 2014, 4(1): 4452
https://doi.org/10.1038/srep04452
34 Moghaddam R B ,  Pickup P G . An electrochemical impedance study of thin polycarbazole films. Electrochimica Acta, 2014, 130: 577–582 
https://doi.org/10.1016/j.electacta.2014.03.059
35 Wang Y J, Zhao  N, Fang B ,  Li H, Bi  X T, Wang  H. Effect of different solvent ratio (ethylene glycol/water) on the preparation of Pt/C catalyst and its activity toward oxygen reduction reaction. RSC Advances, 2015, 5(70): 56570–56577
https://doi.org/ 10.1039/C5RA08068A
36 Rice C A, Bauskar  A, Pickup P G . Recent advances in electrocatalysis of formic acid oxidation. In: M. Shao (Ed.) Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach. London: Springer, 2013: 69–87
37 Rice C, Ha  S, Masel R I ,  Waszczuk P ,  Wieckowski A ,  Barnard T . Direct formic acid fuel cells. Journal of Power Sources, 2002, 111(1): 83–89 
https://doi.org/10.1016/S0378-7753(02)00271-9
38 Yu X, Pickup  P G. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources, 2008, 182(1): 124–132
https://doi.org/10.1016/j.jpowsour.2008.03.075
39 Brummer S B, Makrides  A C. Adsorption and oxidation of formic acid on smooth platinum electrodes in perchloric acid solutions. Journal of Physical Chemistry, 1964, 68(6): 1448–1459
https://doi.org/ 10.1021/j100788a030
[1] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[2] Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
[3] Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack[J]. Front. Energy, 2019, 13(2): 325-338.
[4] S. Y. SHEN, Y. G. GUO, G. H. WEI, L. X. LUO, F. LI, J. L. ZHANG. A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media[J]. Front. Energy, 2018, 12(4): 501-508.
[5] Alireza AHMADIAN YAZDI, Jie XU. Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell[J]. Front. Energy, 2018, 12(2): 233-238.
[6] Nebojsa S. MARINKOVIC, Kotaro SASAKI, Radoslav R. ADZIC. Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy[J]. Front. Energy, 2017, 11(3): 236-244.
[7] Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells[J]. Front. Energy, 2017, 11(3): 286-298.
[8] Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG. A review of Pt-based electrocatalysts for oxygen reduction reaction[J]. Front. Energy, 2017, 11(3): 268-285.
[9] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
[10] Tiejun WANG, Yuping LI, Longlong MA, Chuangzhi WU. Biomass to dimethyl ether by gasification/synthesis technologyan alternative biofuel production route[J]. Front Energ, 2011, 5(3): 330-339.
[11] Zongde LIU, Miao LIU, Liping ZHAO. Technology for the preparation and application of cermet coatings and claddings in thermal power plants[J]. Front Energ, 2011, 5(3): 257-262.
[12] Junliang ZHANG. Recent advances in cathode electrocatalysts for PEM fuel cells[J]. Front Energ, 2011, 5(2): 137-148.
[13] YAO Chunde, LIU Xibo, WANG Hongfu, LIU Xiaoping, CHENG Chuanhui, WANG Yinshan. Study on emissions reduction of DMCC engine with oxidation catalyst[J]. Front. Energy, 2007, 1(4): 441-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed