Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (3) : 365-373    https://doi.org/10.1007/s11708-017-0500-8
RESEARCH ARTICLE
Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics
Sahithya REDDIVARI1, Christian LASTOSKIE2(), Ruofei WU3, Junliang ZHANG3
1. Perimeter College, Georgia State University, Clarkston, GA 30021, USA
2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
3. Institute of Fuel Cells, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(409 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn2+ in this interface layer are not yet well understood.

To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

Keywords lithium manganese oxide batteries      reactive force field (ReaxFF)      cathode-electrolyte interface layer      molecular dynamics     
Corresponding Author(s): Christian LASTOSKIE   
Just Accepted Date: 28 July 2017   Online First Date: 25 August 2017    Issue Date: 07 September 2017
 Cite this article:   
Sahithya REDDIVARI,Christian LASTOSKIE,Ruofei WU, et al. Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics[J]. Front. Energy, 2017, 11(3): 365-373.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0500-8
https://academic.hep.com.cn/fie/EN/Y2017/V11/I3/365
Fig.1  Initial configuration of the simulation cell with the cathode in the center (The 100 surface is exposed to the electrolyte on both sides.)
Fig.2  The simulation snapshot for ReaxFF force field based MD simulation of LiMn2O4 cathode, EC/DMC electrolyte, LiPF6 salt and FEC electrolyte additive (This snapshot shows the primary compounds present in the cathode-electrolyte interface layer after 2 ns at 330 K under NVT ensemble.)
Fig.3  Oxidation pathways of electrolyte solvent molecules on the cathode surface
Fig.4  Time evolution of primary products and reactants in the cathode-electrolyte interface layer
Fig.5  Reactions leading to the formation of the cathode-electrolyte interface (Solid lines indicate products as predicted by ReaxFF and dashed line indicates a proposed reaction pathway.)
24 Li C, Zhang  H P, Fu  L J, Liu  H, Wu Y P ,  Rahmb E ,  Holze R ,  Wu H Q . Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 51(19): 3872–3883 
https://doi.org/10.1016/j.electacta.2005.11.015
25 Sahan H, Goktepe  H, Patat S . A novel method to improve the electrochemical performance of LiMn2O4 cathode active material by CaCO3 surface coating. Journal of Materials Science and Technology, 2011, 27(5): 415–420 
https://doi.org/10.1016/S1005-0302(11)60084-4
26 Wu H C, Su  C Y, Shieh  D T, Yang  M H, Wu  N L. Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive. Electrochemical and Solid-State Letters, 2006, 9(12): A537 
https://doi.org/10.1149/1.2351954
27 Eom J Y, Jung  I H, Lee  J H. Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries. Journal of Power Sources, 2011, 196(22): 9810–9814
https://doi.org/10.1016/j.jpowsour.2011.06.095
28 Ogawa T, Miyano  M, Suzuki Y ,  Suzuki A ,  Tsuboi H ,  Hatakeyama N ,  Endou A ,  Takaba H ,  Miyamoto A . A theoretical study on initial processes of Li-ion transport at the electrolyte/cathode interface: a quantum chemical molecular dynamics approach. Japanese Journal of Applied Physics, 2010, 49(4): 04DP11–04DP11–6 
https://doi.org/10.1143/JJAP.49.04DP11
29 Tasaki K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. Journal of Physical Chemistry B, 2005, 109(7): 2920–2933 
https://doi.org/10.1021/jp047240b
1 Scrosati B, Garche  J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430 
https://doi.org/10.1016/j.jpowsour.2009.11.048
30 Xing L, Li  W, Wang C ,  Gu F, Xu  M, Tan C ,  Yi J. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. Journal of Physical Chemistry B, 2009, 113(52): 16596–16602
https://doi.org/ 10.1021/jp9074064
31 Leung K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4 (100) surfaces. Journal of Physical Chemistry C, 2012, 116(18): 9852–9861
https://doi.org/ 10.1021/jp212415x
32 Chenoweth K, van Duin  A C T, Persson  P, Cheng M J ,  Oxgaard J ,  Goddard W A  III. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry A, 2008, 112(37): 14645–14654
https://doi.org/ 10.1021/jp806988b
33 Chenoweth K, van Duin  A C T, Goddard  W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053
https://doi.org/ 10.1021/jp709896w
34 Bedrov D, Smith  G D, van Duin  A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A, 2012, 116(11): 2978–2985
https://doi.org/ 10.1021/jp210345b
35 Reddivari S, Lastoskie  C M, van Duin  A C T. A reactive force field for manganese oxide reduction by methane. Physical Chemistry Chemical Physics, (in press)
36 Reddivari S. Electrode-electrolyte interface layers in lithium ion batteries using reavtive force field based molecular dynamics. Dissertation for the Doctoral Degree. Ann Arbor: University of Michigan, 2016
37 Borodin O, Smith  G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. Journal of Physical Chemistry B, 2009, 113(6): 1763–1776 
https://doi.org/10.1021/jp809614h
38 Martínez L, Andrade  R, Birgin E G ,  Martinez J M . PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009, 30(13): 2157–2164
https://doi.org/ 10.1002/jcc.21224
39 Plimpton S. Fast parallel algorithms for short-range molecular dynamics.  Journal of Computational Physics, 1993, 117(1): 1–19
40 Eriksson T, Andersson  A M, Bishop  A G, Gejke  C, Gustafsson T ,  Thomas J O . Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. Journal of the Electrochemical Society, 2002, 149(1): A69–A78 
https://doi.org/10.1149/1.1426398
41 Aurbach D, Markovsky  B, Salitra G ,  Markevich E ,  Talyossef Y ,  Koltypin M ,  Nazar L ,  Ellis B ,  Kovacheva D . Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165(2): 491–499 
https://doi.org/10.1016/j.jpowsour.2006.10.025
42 Matsui M, Dokko  K, Kanamura K . Dynamic behavior of surface film on LiCoO2 thin film electrode. Journal of Power Sources, 2008, 177(1): 184–193 
https://doi.org/10.1016/j.jpowsour.2007.10.078
43 Aurbach D, Ein-Ely  Y, Zaban A . The surface chemistry of lithium electrodes in alkyl carbonate solutions. Journal of the Electrochemical Society, 1994, 141(1): L1–L3 
https://doi.org/10.1149/1.2054718
44 Carroll K J, Qian  D, Fell C ,  Calvin S ,  Veith G M ,  Chi M, Baggetto  L, Meng Y S . Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Physical Chemistry Chemical Physics Pccp, 2013, 15(26): 11128–11138
https://doi.org/10.1039/c3cp51927a
45 Aurbach D, Zaban  A, Gofer Y ,  Ely Y E ,  Weissman I ,  Chusid O ,  Abramson O . Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources, 1995, 54(1): 76–84 
https://doi.org/10.1016/0378-7753(94)02044-4
46 Lux S F, Lucas  I T, Pollak  E, Passerini S ,  Winter M ,  Kostecki R . The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications, 2012, 14(1): 47–50 
https://doi.org/10.1016/j.elecom.2011.10.026
47 Simmen F, Hintennach  A, Horisberger M ,  LippertT, Novák  P, Schneider C W ,  Wokaun A . Aspects of the surface layer formation on Li1+xMn2O4−δ during electrochemical cycling. Journal of the Electrochemical Society, 2010, 157(9): A1026
https://doi.org/ 10.1149/1.3464798
48 Wang E, Ofer  D, Bowden W ,  Iltchev N ,  Moses R ,  Brandt K . Stability of lithium ion spinel cells. III. improved life of charged cells. Journal of the Electrochemical Society, 2000, 147(11): 4023–4028
https://doi.org/ 10.1149/1.1394013
49 Wang R, Li  X, Wang Z ,  Guo H. Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive. Journal of Solid State Electrochemistry, 2016, 20(1): 19–28
https://doi.org/ 10.1007/s10008-015-2998-1
2 Dunn B, Kamath  H, Tarascon J M . Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935
https://doi.org/ 10.1126/science.1212741
3 Desilvestro J, Haas  O. Metal oxide cathode materials for electrochemical energy storage: a review. ChemInform, 1990, 137(1): 5C–22C
4 Vetter J,Novák P, Wagner M R, Veit C,Moller   K C,Besenhard  J O,WinterM, Wohlfahrt-Mehrens M, Vogler C, Hammouche A.Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1): 269–281
5 Rodriguezcarvajal J ,  Rousse G ,  Masquelier C ,  Hervieu M . Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Physical Review Letters, 1998, 81(21): 4660–4663
https://doi.org/10.1103/PhysRevLett.81.4660
6 Amine K, Chen  C H, Liu  J, Hammond M ,  Jansen A ,  Dees D, Bloom  I, Vissers D ,  Henriksen G . Factors responsible for impedance rise in high power lithium ion batteries. Journal of Power Sources, 2001, 97(01): 684–687
https://doi.org/ 10.1016/S0378-7753(01)00701-7
7 Xu B, Fell  C R, Chi  M, Meng Y S . Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy & Environmental Science, 2011, 4(6): 2223–2233 
https://doi.org/10.1039/c1ee01131f
8 Chen C, Liu  J, Amine K . Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. Journal of Power Sources, 2001, 96(2): 321–328 
https://doi.org/10.1016/S0378-7753(00)00666-2
9 Edström K, Gustafsson  T, Thomas J O . The cathode-electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50(2–3): 397–403
https://doi.org/ 10.1016/j.electacta.2004.03.049
10 Balbuena P B, Wang  Y H. Lithium-ion Batteries: Solid-electrolyte Interphase. USA: Imperial College Press, 2004
11 Yang L, Ravdel  B, Lucht B L . Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97 
https://doi.org/10.1149/1.3428515
12 Zhan C, Lu  J, Jeremy K A ,  Wu T, Jansen  A N. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nature Communications, 2013, 4(9): 2437
13 Edstrom K, Gustafsson  T, Thomas J O . The cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50(2–3): 397–403 
https://doi.org/10.1016/j.electacta.2004.03.049
14 Doh C H, Lee  J H, Lee  D J, Jin  B S, Moon  S I. The quantitative analyses of the dissolved manganese in the electrolyte of  Li/LiMn2O4 cell using by ion chromatography. Bulletin of the Korean Chemical Society, 2009, 30(10): 4–7
15 Demeaux J, Caillon-Caravanier  M, Galiano H ,  Lemordant D ,  Claude-Montigny B . LiNi0.4Mn1.6O4/electrolyte and carbon black/electrolyte high voltage interfaces: to evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation. ECS Transactions, 2012, 41(31): 65–78
16 Gulbinska M K . Catalytic materials and processes in secondary lithium-ion batteries. New & Future Developments in Catalysis, 2013: 479–498
17 Jow R T, Xu  K, Borodin O ,  Ue M. Electrolytes for Lithium and Lithium-ion Batteries. New York: Springer,  2014
18 Amine K, Tukamoto  H, Yasuda H ,  Fujita Y . Preparation and electrochemical investigation of LiMn2−xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. Journal of Power Sources, 1997, 68(2): 604–608
https://doi.org/ 10.1016/S0378-7753(96)02590-6
19 Banov B, Todorov  Y, Trifonova A ,  Momchilov A ,  Manev V . LiMnCoO4 cathode with enhanced cycleability. Journal of Power Sources, 1997, 68(2): 578–581
https://doi.org/10.1016/S0378-7753(97)02647-5
20 Gummow R J, de Kock  A, Thackeray M M . Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994, 69(1): 59–67 
https://doi.org/10.1016/0167-2738(94)90450-2
21 Myung S T, Komaba  S, Kumagai N . Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the Eemulsion drying method. Journal of the Electrochemical Society, 2001, 148(5): A482–A489
https://doi.org/10.1149/1.1365140
22 Bhaskar A, Mikhailova  D, Kiziltas-Yavuz N ,  Nikolowski K ,  Oswald S ,  Bramnik N N ,  Ehrenberg H. 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Progress in Solid State Chemistry, 2014, 42(4): 128–148 
https://doi.org/10.1016/j.progsolidstchem.2014.04.007
23 Chen Z, Qin  Y, Amine K ,  Sun Y K . Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20(36): 7606–7612
https://doi.org/ 10.1039/c0jm00154f
[1] Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU. Room temperature liquid metal: its melting point, dominating mechanism and applications[J]. Front. Energy, 2020, 14(1): 81-104.
[2] Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG. Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices[J]. Front. Energy, 2018, 12(1): 137-142.
[3] Quanwen HOU, Bingyang CAO, Zengyuan GUO. Temperature difference-powered carbon nanotube bearings[J]. Front Energ, 2011, 5(1): 49-52.
[4] LIU Juanfang, ZENG Danling, LI Qin, GAO Hong. Molecular dynamics simulation of diffusivity[J]. Front. Energy, 2008, 2(3): 359-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed