Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (4) : 452-460    https://doi.org/10.1007/s11708-017-0504-4
RESEARCH ARTICLE
Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions
Junhyun CHO1, Hyungki SHIN1, Jongjae CHO1, Young-Seok KANG2, Ho-Sang RA1, Chulwoo ROH1, Beomjoon LEE1, Gilbong LEE1, Byunghui KIM3, Young-Jin BAIK1()
1. Thermal Energy System Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yusung-gu, Daejeon 34129, Republic of Korea
2. Engine Component Research Team, Korea Aerospace Research Institute (KARI), 169-84 Gwahak-ro, Yusung-gu, Daejeon 34133, Republic of Korea
3. InGineers, 21 Saman-ro, 16 Beon-gil, Gimhae-si, Gyeongsangnam-do 621-220, Republic of Korea
 Download: PDF(615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Research on applying a supercritical carbon dioxide power cycle (S-CO2) to concentrating solar power (CSP) instead of a steam Rankine cycle or an air Brayton cycle has been recently conducted. An S-CO2 system is suitable for CSP owing to its compactness, higher efficiency, and dry-cooling capability. At the Korea Institute of Energy Research (KIER), to implement an S-CO2 system, a 10 kWe class test loop with a turbine-alternator-compressor (TAC) using gas foil bearings was developed. A basic sub-kWe class test loop with a high-speed radial type turbo-generator and a test loop with a capability of tens of kWe with an axial type turbo-generator were then developed. To solve the technical bottleneck of S-CO2 turbomachinery, a partial admission nozzle and oil-lubrication bearings were used in the turbo-generators. To experience the closed-power cycle and develop an operational strategy of S-CO2 operated at high pressure, an organic Rankine cycle (ORC) operating test using a refrigerant as the working fluid was conducted owing to its operational capability at relatively low-pressure conditions of approximately 30 to 40 bar. By operating the sub-kWe class test loop using R134a as the working fluid instead of CO2, an average turbine power of 400 W was obtained.

Keywords supercritical CO2      power cycle      turbomachinery      compressor      turbine     
Corresponding Author(s): Young-Jin BAIK   
Just Accepted Date: 13 September 2017   Online First Date: 31 October 2017    Issue Date: 14 December 2017
 Cite this article:   
Junhyun CHO,Hyungki SHIN,Jongjae CHO, et al. Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions[J]. Front. Energy, 2017, 11(4): 452-460.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0504-4
https://academic.hep.com.cn/fie/EN/Y2017/V11/I4/452
KIER (2013–2014) [11] KIER (2014–) KIER (2015–) SNL (USA) BMPC (USA)
Capacity/kWe 10 Sub-kWe 100 250 (125+125) 100
Cycle Simple un-recuperated closed Brayton Transcritical &
Simple recuperated
Dual Brayton Recompression closed Brayton Simple recuperated closed Brayton
Turbomachinery 1 TAC 1 Turbo-generator 1 TAC (designed) +
1 Turbo-generator* (built)
2 TACs 1 turbo-compressor+
1 turbo-generator
Compressor Centrifugal, shrouded Positive displacement pump Centrifugal Centrifugal Centrifugal
Turbine Radial, shrouded Radial w/
Partial admission nozzle
Axial impulse
w/ Partial admission nozzle*
Radial Radial
Bearing Gas foil journal/thrust Angular contact ball
(Oil lubrication)
Tilting-pad*
(Oil lubrication)
Gas foil journal/thrust Gas foil journal/thrust
Design speed/(RPM) 70000 200000 45000* 75000 75000
Heater Thermal oil boiler(LNG fired) Immersion electric heater LNG fired flue gas heater Immersion type electric heater Heat transfer fluid electric heater
Recuperator 1 PCHE 2 PCHE 2 PCHE 1 wavy-fin, wire mesh
Electric power generation (kWe/ MPa/°C/kRPM/yr) 0.0/8.5/85/30/2014 0.4 (turbine) /2.95/110/90/2016
(operated with R134a as a workingfluid)
0.0/0/0/0/2016
(preliminary testing)
15/10.5/477
/50/2012
40/14.1/282
/55/2014
Tab.1  SupercriticalCO2 power cycle experimental test loops
Fig.1  Sub-kWe-class supercriticalCO2 power cycle
Fig.2  Specific speed of designtarget turbine
Fig.3  A sub-kWe-class radial turbinewheel
Fig.4  A sub-kWe-class turbo-generator
Parameters Design target CFD result
Rotational speed/(RPM) 200000
Wheel diameter/mm 22.6
Blade height/mm 1.7
Mass flow rate/(kg·s−1) 0.621 0.626
Expansion ratio 2.27 2.27
Efficiency/% 79.7
Tab.2  Performance predictionby numerical method (full-admission condition)
Fig.5  Vibration test results witha cold-gas
Operation modes Operation strategy
Cycle operation 1. Closed cycle operation characteristics andcontrol parameters
2. Closed Rankine cycle operation characteristicswith phase change and control parameters
3. Identification of cycle operation characteristicsand analysis of control parameters through expansion needle valves
4. Identification of cycle operation characteristicsaccording to working fluid filling amount and analysis of controlparameters
5. Identification of cycle starting characteristicsand development of the control strategy
6. Analysis and development of the control strategyof the CO2 pumps
7. Development of the cycle restart procedureand control strategy through expansion needle valve after turbineshutdown
8. Development of the cycle characteristic/turbineoperating characteristic analysis method based on raw data measurement
Turbine operation 1. Development of turbine start-up procedureand control strategy
2. Identification and analysis of turbine start-upoperation characteristics
3. Confirm turbine power production
4. Analysis of turbine operation characteristicsby controlling turbine load
5. Analysis of cycle pressurizing/heating/coolingsection operation characteristics during turbine operation
6. Identification of turbine leakage amountand characteristics
7. Development and complementation of turbineleakage make-up strategy
8. Development of cycle control strategy foroperation of the turbine design point
9. Verification of vibration stability characteristicswhen driving a turbine
10. Identification of bearing/generator temperaturechange characteristics during turbine operation
11. Check and supplement emergency stop operationin case of turbine problems
12. Development of turbine drive stop procedureand control strategy
Tab.3  Operation strategyof a closed Rankine cycle
Fig.6  Preliminary test resultsusing R134a as a working fluid
Fig.7  Generated turbine power
CSP Concentrating solar power
PCHE Printed circuit heat exchanger
RPM Rotation per minute
S-CO2 Supercritical carbon dioxide power cycle
TAC Turbo-alternator-compressor
  
1 Dostal V, Driscoll  M, Hejzlar P . A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology, MA 2004, MIT-ANP-TR-100
2 Wright S A, Radel  R F, Vernon  M E, Rochau  G E, Pickard  P S. Operation and analysis of a supercritical CO2 Brayton cycle. SANDIA REPORT, 2010: SAND2010–0171
3 Pasch J J, Conboy  T M, Fleming  D D, Rochau  G E. Supercritical CO2 recompression Brayton cycle: completed assembly description. SANDIA REPORT, 2012: SAND 2012–9546
4 Conboy T, Wright  S A, Pasch  J, Fleming D ,  Rochau G ,  Fuller R . Performance characteristics of an operating supercritical CO2 Brayton cycle.  ASME Turbo Expo: Turbine Technical Conference & Exposition, 2012, 134(11): GT2012–68415
5 Conboy T, Pasch  J, Fleming D . Control of a supercritical CO2 recompression Brayton cycle demonstration loop. Asme Turbo Expo: Turbine Technical Conference & Exposition, 2013, 135(11): GTP–13–1198
6 Clementoni E M ,  Cox T L . Steady-state power operation of a supercritical carbon dioxide Brayton cycle. ASME Turbo Expo: Turbine Technical Conference & Exposition, 2014: GT2014–25336
7 Clementoni E M ,  Cox T L . Practical aspects of supercritical carbon dioxide Brayton system testing. Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
8 Kalra C J. Development of high efficiency hot gas turbo-expander for optimized CSP supercritical CO2 power block operation. Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
9 Moore J, Brun  K, Evans N ,  Bueno P ,  Kalra C J . Development of a 1 MWe supercritical CO2 Brayton cycle test loop.  Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
10 Held T J. Initial test results of a megawatt-class supercritical CO2 heat engine. Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
11 Zhang Z, Ma  Y, Li M ,  Zhao L. Recent advances of energy recovery expanders in the Transcritical CO2 refrigeration cycle. HVAC & R Research, 2013, 19(4): 376–384
12 Cho J, Choi  M, Baik Y J ,  Lee G, Ra  H S, Kim  B, Kim M . Development of the turbomachinery for the supercritical CO2 power cycle. International Journal of Energy Research, 2016, 40(5): 587–599
https://doi.org/10.1002/er.3453
13 Cho J, Shin  H, Cho J ,  Ra H S ,  Roh C, Lee  B, Lee G ,  Baik Y J . Development of the supercritical carbon dioxide power cycle experimental loop with a turbo-generator. Asme Turbo Expo: Turbomachinery Technical Conference & Exposition, 2016: GT2017–64287
[1] Dengji ZHOU, Jiarui HAO, Dawen HUANG, Xingyun JIA, Huisheng ZHANG. Dynamic simulation of gas turbines via feature similarity-based transfer learning[J]. Front. Energy, 2020, 14(4): 817-835.
[2] Xiaojing LV, Weilun ZENG, Xiaoyi DING, Yiwu WENG, Shilie WENG. Experimental investigation of a novel micro gas turbine with flexible switching function for distributed power system[J]. Front. Energy, 2020, 14(4): 790-800.
[3] Ruixiang WANG, Yihao ZHANG, Yi LIAO. Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives[J]. Front. Energy, 2020, 14(3): 644-648.
[4] Haizhu WANG, Gensheng LI, Bin ZHU, Kamy SEPEHRNOORI, Lujie SHI, Yong ZHENG, Xiaomei SHI. Key problems and solutions in supercritical CO2 fracturing technology[J]. Front. Energy, 2019, 13(4): 667-672.
[5] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[6] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[7] Haizheng DANG, Dingli BAO, Zhiqian GAO, Tao ZHANG, Jun TAN, Rui ZHA, Jiaqi LI, Ning LI, Yongjiang ZHAO, Bangjian ZHAO. Theoretical modeling and experimental verifications of the single-compressor-driven three-stage Stirling-type pulse tube cryocooler[J]. Front. Energy, 2019, 13(3): 450-463.
[8] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[9] Da LEI, Xuehong LI, Yun LI, Xiwen REN. Design of packing cup interference fit value of hypercompressors for low density polyethylene production[J]. Front. Energy, 2019, 13(1): 107-113.
[10] Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG. Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle[J]. Front. Energy, 2019, 13(1): 54-63.
[11] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[12] Xiaojing LV, Yu WENG, Xiaoyi DING, Shilie WENG, Yiwu WENG. Technological development of multi-energy complementary system based on solar PVs and MGT[J]. Front. Energy, 2018, 12(4): 509-517.
[13] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[14] Fidelis I. ABAM,Samuel O. EFFIOM,Olayinka S. OHUNAKIN. CFD evaluation of pressure drop across a 3-D filter housing for industrial gas turbine plants[J]. Front. Energy, 2016, 10(2): 192-202.
[15] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed